On the Spectral Density of the Wavelet Coefficients of Long‐Memory Time Series with Application to the Log‐Regression Estimation of the Memory Parameter
暂无分享,去创建一个
[1] Elias Masry,et al. The wavelet transform of stochastic processes with stationary increments and its application to fractional Brownian motion , 1993, IEEE Trans. Inf. Theory.
[2] Patrice Abry,et al. A Wavelet-Based Joint Estimator of the Parameters of Long-Range Dependence , 1999, IEEE Trans. Inf. Theory.
[3] C.-C. Jay Kuo,et al. Fractal estimation from noisy data via discrete fractional Gaussian noise (DFGN) and the Haar basis , 1993, IEEE Trans. Signal Process..
[4] A. Walden,et al. Wavelet Methods for Time Series Analysis , 2000 .
[5] P. Robinson. Gaussian Semiparametric Estimation of Long Range Dependence , 1995 .
[6] B. Mandelbrot,et al. Fractional Brownian Motions, Fractional Noises and Applications , 1968 .
[7] M. Taqqu,et al. Large-Sample Properties of Parameter Estimates for Strongly Dependent Stationary Gaussian Time Series , 1986 .
[8] Gregory W. Wornell,et al. Estimation of fractal signals from noisy measurements using wavelets , 1992, IEEE Trans. Signal Process..
[9] Donald B. Percival,et al. Asymptotic decorrelation of between-Scale Wavelet coefficients , 2005, IEEE Transactions on Information Theory.
[10] S. Mallat. A wavelet tour of signal processing , 1998 .
[11] Peter Guttorp,et al. Wavelet-based parameter estimation for polynomial contaminated fractionally differenced processes , 2005, IEEE Transactions on Signal Processing.
[12] A. Cohen. Numerical Analysis of Wavelet Methods , 2003 .
[13] R. Dahlhaus. Efficient parameter estimation for self-similar processes , 1989, math/0607078.
[14] R. Gencay,et al. An Introduction to Wavelets and Other Filtering Methods in Finance and Economics , 2001 .
[15] Jean-Marc Bardet,et al. Wavelet Estimator of Long-Range Dependent Processes , 2000 .
[16] Bonnie K. Ray,et al. ESTIMATION OF THE MEMORY PARAMETER FOR NONSTATIONARY OR NONINVERTIBLE FRACTIONALLY INTEGRATED PROCESSES , 1995 .
[17] Jean-Marc Bardet,et al. Statistical study of the wavelet analysis of fractional Brownian motion , 2002, IEEE Trans. Inf. Theory.
[18] Liudas Giraitis,et al. RATE OPTIMAL SEMIPARAMETRIC ESTIMATION OF THE MEMORY PARAMETER OF THE GAUSSIAN TIME SERIES WITH LONG‐RANGE DEPENDENCE , 1997 .
[19] H. Poor,et al. Estimating the Fractal Dimension of the S&P 500 Index Using Wavelet Analysis , 2003, math/0703834.
[20] Patrick Flandrin,et al. Wavelet analysis and synthesis of fractional Brownian motion , 1992, IEEE Trans. Inf. Theory.
[21] Patrice Abry,et al. Long-Range Dependence: Theory and Applications , 2002 .
[22] P. Robinson,et al. Whittle Pseudo-Maximum Likelihood Estimation for Nonstationary Time Series , 2000 .
[23] Ravi Mazumdar,et al. Wavelet representations of stochastic processes and multiresolution stochastic models , 1994, IEEE Trans. Signal Process..
[24] Patrice Abry,et al. Wavelet Analysis of Long-Range-Dependent Traffic , 1998, IEEE Trans. Inf. Theory.
[25] Yanqin Fan. On the approximate decorrelation property of the discrete wavelet transform for fractionally differenced processes , 2003, IEEE Trans. Inf. Theory.
[26] Eric Moulines,et al. The FEXP estimator for potentially non-stationary linear time series , 2002 .
[27] C. Velasco. Gaussian Semiparametric Estimation of Non‐stationary Time Series , 1999 .
[28] Ingrid Daubechies,et al. Ten Lectures on Wavelets , 1992 .
[29] A. Walden,et al. Wavelet Analysis and Synthesis of Stationary Long-Memory Processes , 1996 .