Three-dimensional quantum calculation of the vibrational energy levels of ozone

The Fox–Goodwin propagator associated with an iterative matching procedure is used for the exact quantum mechanical calculation of the vibrational‐rotational energy levels of a triatomic molecule. The method starts with the specification of a potential energy surface monitoring the relative motion of the atoms and utilizes the well‐known close coupled equations technique of molecular scattering theory formulated in a body‐fixed reference frame. The number of equations is optimized by the choice of some judicious local basis. Accurate values for the lowest energy eigenvalues obtained for ozone molecule in its fundamental electronic state and corresponding to zero total angular momentum are presented and compared with results arising from variational and spectral methods. The method seems to be an accurate tool not only for bound states calculations but also for resonances occuring in photodissociation processes.

[1]  O. Atabek,et al.  On the occurrence of multiple spectra of eigenvalues in the one-dimensional complex scaled Schrödinger equation , 1983 .

[2]  R. Walker,et al.  Wigner method studies of ozone photodissociation , 1983 .

[3]  M. Feit,et al.  Solution of the Schrödinger equation by a spectral method II: Vibrational energy levels of triatomic molecules , 1983 .

[4]  M. Shapiro,et al.  Three‐dimensional quantum dynamics of H2O and HOD photodissociation , 1982 .

[5]  E. Heller,et al.  Photodissociation of ozone in the Hartley band. Exploratory potential energy surfaces and molecular dynamics , 1982 .

[6]  M. D. Feit,et al.  Propagating beam theory of optical fiber cross coupling , 1981 .

[7]  D. G. Hopper,et al.  Theoretical studies of the ozone molecule. I. Ab initio MCSCF/CI potential energy surfaces for the X 1A1 and a 2B2 states , 1981 .

[8]  ArnoldM. Bass,et al.  UV absorption cross sections for ozone: the temperature dependence , 1981 .

[9]  M. Shapiro,et al.  Exact calculation of the rotational–vibrational energy levels of triatomic species , 1981 .

[10]  O. Atabek,et al.  Multichannel Siegert quantization with complex rotated coordinates: Application to molecular resonances , 1980 .

[11]  M. Ablowitz,et al.  A comparison between finite element methods and spectral methods as applied to bound state problems , 1980 .

[12]  Moshe Shapiro,et al.  A new method for the exact calculation of vibrational–rotational energy levels of triatomic molecules , 1979 .

[13]  B. R. Johnson The renormalized Numerov method applied to calculating bound states of the coupled‐channel Schroedinger equation , 1978 .

[14]  G. Schatz,et al.  Quantum mechanical reactive scattering for three-dimensional atom plus diatom systems. I. Theory , 1976 .

[15]  K. Sorbie,et al.  Analytical potentials for triatomic molecules from spectroscopic data , 1975 .

[16]  G. D. Carney,et al.  H3 +: Abinitio calculation of the vibration spectrum , 1976 .

[17]  A. M. Dunker,et al.  Solution for bound state wavefunctions and matrix elements by the piecewise analytic method , 1976 .

[18]  G. D. Carney,et al.  Improved potential functions for bent AB2 molecules: Water and ozone , 1976 .

[19]  W. Miller Dynamics of Molecular Collisions , 1976 .

[20]  A. Barbe,et al.  Infrared spectra of 16O3 and 18O3: Darling and Dennison resonance and anharmonic potential function of ozone , 1974 .

[21]  R. T. Pack Space‐fixed vs body‐fixed axes in atom‐diatomic molecule scattering. Sudden approximations , 1974 .

[22]  E. Bair,et al.  Ozone ultraviolet photolysis. VI. The ultraviolet spectrum , 1973 .

[23]  D. W. Norcross,et al.  Asymptotic solutions of the coupled equations of electron-atom collision theory for the case of some channels closed , 1973 .

[24]  R. T. Pack,et al.  Energy corrections to the Born- Oppenheimer approximation - The best adiabatic approximation , 1970 .

[25]  H. Lefebvre-Brion Theoretical study of homogeneous perturbations. II. Least-squares fitting method to obtain , 1969 .

[26]  J. Watson Simplification of the molecular vibration-rotation hamiltonian , 2002 .

[27]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[28]  C. F. Curtiss,et al.  Molecular Collisions. II. Diatomic Molecules , 1961 .

[29]  A. Witkowski,et al.  Electronic Spectra of Dimers: Derivation of the Fundamental Vibronic Equation , 1960 .

[30]  A. Arthurs,et al.  The theory of scattering by a rigid rotator , 1960, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[31]  H. C. Longuet-Higgins,et al.  Theory of the Renner effect in the NH2 radical , 1958 .

[32]  L. Fox,et al.  The Numerical Solution of Two-Point Boundary Problems in Ordinary Differential Equations , 1958 .

[33]  M. E. Rose,et al.  Elementary Theory of Angular Momentum , 1957 .

[34]  W. Moffitt,et al.  Vibronic States of Octahedral Complexes , 1957 .

[35]  David M. Dennison,et al.  The Water Vapor Molecule , 1940 .