An efficient algorithm for the generation of two‐electron repulsion integrals over gaussian basis functions
暂无分享,去创建一个
[1] Svein Saebo,et al. Avoiding the integral storage bottleneck in LCAO calculations of electron correlation , 1989 .
[2] Shigeru Obara,et al. Efficient recursive computation of molecular integrals over Cartesian Gaussian functions , 1986 .
[3] V. R. Saunders,et al. An Introduction to Molecular Integral Evaluation , 1975 .
[4] H. Bernhard Schlegel,et al. An efficient algorithm for calculating ab initio energy gradients using s, p Cartesian Gaussians , 1982 .
[5] Dermot Hegarty,et al. Integral evaluation algorithms and their implementation , 1983 .
[6] Clemens C. J. Roothaan,et al. New Developments in Molecular Orbital Theory , 1951 .
[7] Warren J. Hehre,et al. Computation of electron repulsion integrals involving contracted Gaussian basis functions , 1978 .
[8] Michael J. Frisch,et al. MP2 energy evaluation by direct methods , 1988 .
[9] S. F. Boys. Electronic wave functions - I. A general method of calculation for the stationary states of any molecular system , 1950, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.
[10] Michel Dupuis,et al. Computation of electron repulsion integrals using the rys quadrature method , 1983 .
[11] R. K. Nesbet,et al. Self‐Consistent Orbitals for Radicals , 1954 .
[12] D. Hegarty. Evaluation and Processing of Integrals , 1984 .
[13] Michel Dupuis,et al. Evaluation of molecular integrals over Gaussian basis functions , 1976 .
[14] E. Davidson,et al. One- and two-electron integrals over cartesian gaussian functions , 1978 .
[15] J. Almlöf,et al. Principles for a direct SCF approach to LICAO–MOab‐initio calculations , 1982 .
[16] Martin Head-Gordon,et al. A method for two-electron Gaussian integral and integral derivative evaluation using recurrence relations , 1988 .
[17] Michel Dupuis,et al. Numerical integration using rys polynomials , 1976 .
[18] Martin Head-Gordon,et al. Optimization of wave function and geometry in the finite basis Hartree-Fock method , 1988 .
[19] H. Schlegel. Analytical second derivatives of two electron integrals over s and p Cartesian Gaussians , 1989 .