Most robust and fragile two-qubit entangled states under depolarizing channels

For a two-qubit system under local depolarizing channels, the most robust and most fragile states are derived for a given concurrence or negativity. For the one-sided channel, the pure states are proved to be the most robust ones, with the aid of the evolution equation for entanglement given by Konrad et al. [Nat. Phys. 4, 99 (2008)]. Based on a generalization of the evolution equation for entanglement, we classify the ansatz states in our investigation by the amount of robustness, and consequently derive the most fragile states. For the two-sided channel, the pure states are the most robust for a fixed concurrence. Under the uniform channel, the most fragile states have the minimal negativity when the concurrence is given in the region [1/2, 1]. For a given negativity, the most robust states are the ones with the maximal concurrence, and the most fragile ones are the pure states with minimum of concurrence. When the entanglement approaches zero, the most fragile states under general nonuniform channels tend to the ones in the uniform channel. Influences on robustness by entanglement, degree of mixture, and asymmetry between the two qubits are discussed through numerical calculations. It turns out that the concurrence and negativity are major factors for the robustness. When they are fixed, the impact of the mixedness becomes obvious. In the nonuniform channels, the most fragile states are closely correlated with the asymmetry, while the most robust ones with the degree of mixture.

[1]  W. Wootters,et al.  Entanglement of a Pair of Quantum Bits , 1997, quant-ph/9703041.

[2]  P. Corkum,et al.  Excitation energies, radiative and autoionization rates, dielectronic satellite lines and dielectronic recombination rates for excited states of Ag-like W from Pd-like W , 2009 .

[3]  B. Moor,et al.  A comparison of the entanglement measures negativity and concurrence , 2001, quant-ph/0108021.

[4]  R. Chaves,et al.  Scaling laws for the decay of multiqubit entanglement. , 2008, Physical review letters.

[5]  Matthew J. Rosseinsky,et al.  Physical Review B , 2011 .

[6]  W. Munro,et al.  Maximizing the entanglement of two mixed qubits , 2001, quant-ph/0103113.

[7]  T. Yu,et al.  Finite-time disentanglement via spontaneous emission. , 2004, Physical review letters.

[8]  M. Lewenstein,et al.  Volume of the set of separable states , 1998, quant-ph/9804024.

[9]  Physics Letters , 1962, Nature.

[10]  A. Plastino,et al.  Robustness of highly entangled multiqubit states under decoherence , 2008, 0806.0779.

[11]  L. Davidovich,et al.  Experimental observation of environment-induced sudden death of entanglement , 2007, SPIE International Symposium on Fluctuations and Noise.

[12]  Belgium,et al.  Maximal entanglement versus entropy for mixed quantum states , 2002, quant-ph/0208138.

[13]  G. Bowen,et al.  Teleportation as a depolarizing quantum channel, relative entropy, and classical capacity. , 2001, Physical review letters.

[14]  October I Physical Review Letters , 2022 .

[15]  Zong-Guo Li,et al.  Evolution equation of entanglement for bipartite systems , 2008, 0806.4228.

[16]  Heng Fan,et al.  Dynamics of the bounds of squared concurrence , 2008, 0812.2993.

[17]  J Laurat,et al.  Heralded entanglement between atomic ensembles: preparation, decoherence, and scaling. , 2007, Physical review letters.

[18]  Fuguo Deng,et al.  Residual effect on the robustness of multiqubit entanglement , 2010, 1007.0068.

[19]  W. Wootters Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.

[20]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[21]  A. Rau,et al.  Manipulating entanglement sudden death of two-qubit X-states in zero- and finite-temperature reservoirs , 2009 .

[22]  Yue Jiang,et al.  Speed of disentanglement in multiqubit systems under a depolarizing channel , 2011, 1104.5057.

[23]  Physical Review , 1965, Nature.

[24]  M. Tiersch,et al.  Evolution equation for quantum entanglement , 2008 .

[25]  G. Alber,et al.  Entanglement and decoherence: fragile and robust entanglement. , 2011, Physical Review Letters.

[26]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .

[27]  G. Vidal,et al.  Robustness of entanglement , 1998, quant-ph/9806094.

[28]  Christoph Simon,et al.  Robustness of multiparty entanglement , 2002 .

[29]  Markus Tiersch,et al.  Entanglement evolution in finite dimensions. , 2008, Physical review letters.

[30]  W Dür,et al.  Stability of macroscopic entanglement under decoherence. , 2004, Physical review letters.

[31]  G. Vidal,et al.  Computable measure of entanglement , 2001, quant-ph/0102117.

[32]  Hendrik B. Geyer,et al.  Journal of Physics A - Mathematical and General, Special Issue. SI Aug 11 2006 ?? Preface , 2006 .

[33]  Chang-shui Yu,et al.  Evolution of entanglement for quantum mixed states , 2008, 0812.3959.

[34]  K. Życzkowski,et al.  Random unitary matrices , 1994 .

[35]  J. H. Eberly,et al.  Phonon decoherence of quantum entanglement: Robust and fragile states , 2002 .

[36]  J. Eberly,et al.  Initial conditions and entanglement sudden death , 2012, 1209.3005.

[37]  J. Eberly,et al.  Quantum open system theory: bipartite aspects. , 2006, Physical review letters.

[38]  Lee,et al.  Entanglement teleportation via werner states , 2000, Physical review letters.