Inpainting of Ancient Austrian frescoes

Digital inpainting methods provide an important tool in the restoration of images in a wide range of applications. We present mathematical methods with certain higher order partial differential equations for the inpainting of ancient frescoes. In particular we discuss the Cahn-Hilliard equation for the inpainting of binary structure and a higher order total variation approach. As an example for the preformance of our algorithms we consider the recently discovered Neidhart frescoes in Vienna.

[1]  Massimo Fornasier,et al.  Restoration of Color Images by Vector Valued BV Functions and Variational Calculus , 2007, SIAM J. Appl. Math..

[2]  D. J. Eyre,et al.  An Unconditionally Stable One-Step Scheme for Gradient Systems , 1997 .

[3]  Anthony J. Yezzi,et al.  Curve evolution implementation of the Mumford-Shah functional for image segmentation, denoising, interpolation, and magnification , 2001, IEEE Trans. Image Process..

[4]  Jean-Michel Morel,et al.  Level lines based disocclusion , 1998, Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269).

[5]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[6]  Tony F. Chan,et al.  Nontexture Inpainting by Curvature-Driven Diffusions , 2001, J. Vis. Commun. Image Represent..

[7]  S. Osher,et al.  IMAGE DECOMPOSITION AND RESTORATION USING TOTAL VARIATION MINIMIZATION AND THE H−1 NORM∗ , 2002 .

[8]  Jianhong Shen,et al.  Digital inpainting based on the Mumford–Shah–Euler image model , 2002, European Journal of Applied Mathematics.

[9]  J. Morel,et al.  An axiomatic approach to image interpolation. , 1998, IEEE transactions on image processing : a publication of the IEEE Signal Processing Society.

[10]  Thomas S. Huang,et al.  Image processing , 1971 .

[11]  L. Lieu,et al.  Image Restoration and Decomposition via Bounded Total Variation and Negative Hilbert-Sobolev Spaces , 2008 .

[12]  Lin He,et al.  Cahn--Hilliard Inpainting and a Generalization for Grayvalue Images , 2009, SIAM J. Imaging Sci..

[14]  Stanley Osher,et al.  Total variation based image restoration with free local constraints , 1994, Proceedings of 1st International Conference on Image Processing.

[15]  Tony F. Chan,et al.  Mathematical Models for Local Nontexture Inpaintings , 2002, SIAM J. Appl. Math..

[16]  Tony F. Chan,et al.  Euler's Elastica and Curvature-Based Inpainting , 2003, SIAM J. Appl. Math..

[17]  Xue-Cheng Tai,et al.  Iterative Image Restoration Combining Total Variation Minimization and a Second-Order Functional , 2005, International Journal of Computer Vision.

[18]  Stanley Osher,et al.  Image Decomposition and Restoration Using Total Variation Minimization and the H1 , 2003, Multiscale Model. Simul..

[19]  Andrea L. Bertozzi,et al.  Inpainting of Binary Images Using the Cahn–Hilliard Equation , 2007, IEEE Transactions on Image Processing.

[20]  Massimo Fornasier,et al.  Nonlinear Projection Recovery in Digital Inpainting for Color Image Restoration , 2006, Journal of Mathematical Imaging and Vision.

[21]  Guillermo Sapiro,et al.  Image inpainting , 2000, SIGGRAPH.

[22]  Tony F. Chan,et al.  Variational Restoration of Nonflat Image Features: Models and Algorithms , 2001, SIAM J. Appl. Math..

[23]  Andrea L. Bertozzi,et al.  Analysis of a Two-Scale Cahn-Hilliard Model for Binary Image Inpainting , 2007, Multiscale Model. Simul..

[24]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .