Atomic Force Microscopic and Electrochemical Investigations of an Electrostatically Fabricated Single-Wall Carbon Nanotubes Modified Electrode

Single-wall carbon nanotubes (SWNTs) sub-monolayer film has been prepared by simply electrostatically adsorbing nanotubes onto a 2-aminoethanethiol self-assembled monolayer (SAM) on a gold bead electrode. Tapping-mode atomic force microscopy (TM-AFM) is used to characterize the SWNT film, which exhibits that the orientation of SWNTs on the SAM is horizontal and the surface coverage is quite low. The SWNTs modified electrode shows nearly ideal electrochemical response to Fe(CN)6 3-/Fe(CN)6 4- redox probe. The electrode with such a low SWNTs coverage, however, shows good electrocatalytic behavior to cytochrome c.

[1]  Wahyu Setyawan,et al.  Nanotube electronics: Large-scale assembly of carbon nanotubes , 2003, Nature.

[2]  Malcolm L. H. Green,et al.  Bioelectrochemical single-walled carbon nanotubes. , 2002, Journal of the American Chemical Society.

[3]  J. Tour,et al.  Ozonation of Single-Walled Carbon Nanotubes and Their Assemblies on Rigid Self-Assembled Monolayers , 2002 .

[4]  Jun Li,et al.  Novel Three-Dimensional Electrodes: Electrochemical Properties of Carbon Nanotube Ensembles , 2002 .

[5]  Hongjie Dai,et al.  Carbon nanotubes: synthesis, integration, and properties. , 2002, Accounts of chemical research.

[6]  Takashi Ito,et al.  Carbon nanotube scanning tunneling microscopy tips for chemically selective imaging. , 2002, Analytical chemistry.

[7]  O. Zhou,et al.  Self‐Assembly of Carbon Nanotubes , 2002 .

[8]  E. Wang,et al.  Formation of a supported hybrid bilayer membrane on gold: A sterically enhanced hydrophobic effect , 2002 .

[9]  Zhennan Gu,et al.  Direct electrochemistry of cytochrome c at a glassy carbon electrode modified with single-wall carbon nanotubes. , 2002, Analytical chemistry.

[10]  Zhongfan Liu,et al.  Toward the Chemistry of Carboxylic Single-Walled Carbon Nanotubes by Chemical Force Microscopy , 2002 .

[11]  Juhyoun Kwak,et al.  Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles , 2001, Nature.

[12]  Charles M. Lieber,et al.  Energy Gaps in "Metallic" Single-Walled Carbon Nanotubes , 2001, Science.

[13]  Z. Gu,et al.  Investigation of the electrochemical and electrocatalytic behavior of single-wall carbon nanotube film on a glassy carbon electrode. , 2001, Analytical chemistry.

[14]  Pulickel M. Ajayan,et al.  Fast Electron Transfer Kinetics on Multiwalled Carbon Nanotube Microbundle Electrodes , 2001 .

[15]  Ray H. Baughman,et al.  Electrochemical Characterization of Single‐Walled Carbon Nanotube Electrodes , 2000 .

[16]  Ray H. Baughman,et al.  Electrochemical studies of single-wall carbon nanotubes in aqueous solutions , 2000 .

[17]  Charles M. Lieber,et al.  Carbon nanotube-based nonvolatile random access memory for molecular computing , 2000, Science.

[18]  Z. Tang,et al.  Self-Assembled Monolayer of Polyoxometalate on Gold Surfaces: Quartz Crystal Microbalance, Electrochemistry, and in-Situ Scanning Tunneling Microscopy Study , 2000 .

[19]  Zhennan Gu,et al.  Organizing Single-Walled Carbon Nanotubes on Gold Using a Wet Chemical Self-Assembling Technique , 2000 .

[20]  Cheng,et al.  Hydrogen storage in single-walled carbon nanotubes at room temperature , 1999, Science.

[21]  J. Heath,et al.  Electrochemical Characterization of Films of Single-Walled Carbon Nanotubes and Their Possible Application in Supercapacitors , 1999 .

[22]  Chen,et al.  High H2 uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperatures , 1999, Science.

[23]  P. Ajayan Nanotubes from Carbon. , 1999, Chemical reviews.

[24]  Richard M. Crooks,et al.  Electrochemistry Using Single Carbon Nanotubes , 1999 .

[25]  Angel Rubio,et al.  Improved Charge Transfer at Carbon Nanotube Electrodes , 1999 .

[26]  H. Dai,et al.  Self-oriented regular arrays of carbon nanotubes and their field emission properties , 1999, Science.

[27]  Charles M. Lieber,et al.  Covalently-Functionalized Single-Walled Carbon Nanotube Probe Tips for Chemical Force Microscopy , 1998 .

[28]  Charles M. Lieber,et al.  Covalently functionalized nanotubes as nanometre- sized probes in chemistry and biology , 1998, Nature.

[29]  T. N. Todorov,et al.  Carbon nanotubes as long ballistic conductors , 1998, Nature.

[30]  Paul L. McEuen,et al.  Nanotechnology: Carbon-based electronics , 1998, Nature.

[31]  S. Tans,et al.  Room-temperature transistor based on a single carbon nanotube , 1998, Nature.

[32]  C. R. Martin,et al.  Carbon nanotubule membranes for electrochemical energy storage and production , 1998, Nature.

[33]  Riichiro Saito,et al.  Raman intensity of single-wall carbon nanotubes , 1998 .

[34]  Richard J. Coles,et al.  Protein electrochemistry at carbon nanotube electrodes , 1997 .

[35]  Madhu Menon,et al.  Carbon Nanotube ``T Junctions'': Nanoscale Metal-Semiconductor-Metal Contact Devices , 1997 .

[36]  Pulickel M. Ajayan,et al.  Carbon nanotube electrode for oxidation of dopamine , 1996 .

[37]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[38]  B. Wu,et al.  Electrochemical study of the initial surface condition of platinum surfaces with (100) and (111) orientations , 1982 .