The structural and thermal characteristics of wheat straw hemicellulose

[1]  R. Sun,et al.  Fractional extraction and structural characterization of sugarcane bagasse hemicelluloses , 2004 .

[2]  J. I. Seeman,et al.  A model that distinguishes the pyrolysis of d-glucose, d-fructose, and sucrose from that of cellulose. Application to the understanding of cigarette smoke formation , 2003 .

[3]  M. L. Fidalgo,et al.  Comparative Study of Fractions from Alkaline Extraction of Wheat Straw through Chemical Degradation, Analytical Pyrolysis, and Spectroscopic Techniques , 1993 .

[4]  V. K. Srivastava,et al.  Predictions of concentration in the pyrolysis of biomass materials—I , 1994 .

[5]  R. Sun,et al.  Stearoylation of hemicelluloses from wheat straw , 2000 .

[6]  Robert M. Carangelo,et al.  TG-FTIR analysis of biomass pyrolysis , 2001 .

[7]  P. Kováč,et al.  Sequential synthesis and 13C-N.m.r. spectra of methyl β-glycosides of (1→4)-β-d-xylo-oligosaccharides , 1982 .

[8]  Li Sun,et al.  Study on Biomass Pyrolysis Kinetics , 2006 .

[9]  Michael A. Serio,et al.  TG-FTIR Study of the Influence of potassium Chloride on Wheat Straw Pyrolysis , 1998 .

[10]  Colomba Di Blasi,et al.  Intrinsic kinetics of isothermal xylan degradation in inert atmosphere , 1997 .

[11]  J. Wold,et al.  Some carbohydrates of low molecular weight present in Cannabis sativa L. , 1973, Carbohydrate research.

[12]  G. Brunner,et al.  Pyrolysis Kinetics of Wood and Wood Components , 2005 .

[13]  Arno P. Schniewind,et al.  Concise encyclopedia of wood & wood-based materials , 1989 .

[14]  Jenny M. Jones,et al.  Uncatalysed and potassium-catalysed pyrolysis of the cell-wall constituents of biomass and their model compounds , 2008 .

[15]  Michael Jerry Antal,et al.  Kinetics of the Thermal Decomposition of Cellulose, Hemicellulose, and Sugar Cane Bagasse , 1989 .

[16]  R. Sun,et al.  Fractional and structural characterization of wheat straw hemicelluloses , 1996 .

[17]  Luis Puigjaner,et al.  Kinetics of Biomass Pyrolysis: a Reformulated Three-Parallel-Reactions Model , 2003 .

[18]  M. Antal,et al.  Thermogravimetric/mass spectrometric characterization of the thermal decomposition of (4‐O‐methyl‐D‐glucurono)‐D‐xylan , 1988 .

[19]  G. N. Richards,et al.  Thermal synthesis and pyrolysis of a xylan , 1991 .

[20]  G. Mckay,et al.  Kinetic Study on Bamboo Pyrolysis , 2008 .

[21]  A. Ebringerová,et al.  Structural and solution properties of corn cob heteroxylans , 1992 .

[22]  M. Ramiah,et al.  Thermogravimetric and differential thermal analysis of cellulose, hemicellulose, and lignin , 1970 .

[23]  A. W. Coats,et al.  Kinetic Parameters from Thermogravimetric Data , 1964, Nature.

[24]  F. Tjerneld,et al.  Characterization of acetylated 4-O-methylglucuronoxylan isolated from aspen employing 1H and 13C NMR spectroscopy. , 2000, Carbohydrate research.

[25]  K. Moore,et al.  Hemicellulose monosaccharide composition and in vitro disappearance of orchard grass and alfalfa hay , 1987 .

[26]  C. Koufopanos,et al.  Pyrolysis, a promising route for biomass utilization , 1992 .

[27]  J. Bellan,et al.  A Generalized Biomass Pyrolysis Model Based on Superimposed Cellulose, Hemicelluloseand Liqnin Kinetics , 1997 .

[28]  Shiro Saka,et al.  Cellulose–hemicellulose and cellulose–lignin interactions in wood pyrolysis at gasification temperature , 2007 .

[29]  J. Delcour,et al.  Heterogeneity in the fine structure of alkali-extractable arabinoxylans isolated from two rye flours with high and low breadmaking quality and their coexistence with other cell wall components. , 2004, Journal of agricultural and food chemistry.

[30]  Kartic C. Khilar,et al.  Pyrolysis characteristics of biomass and biomass components. , 1996 .