暂无分享,去创建一个
Miroslav Rozlozník | Erin C. Carson | Stephen Thomas | Kathryn Lund | Stephen J. Thomas | M. Rozložník | E. Carson | Kathryn Lund
[1] Michael L. Parks,et al. A block Recycled GMRES method with investigations into aspects of solver performance , 2016, ArXiv.
[2] Jack J. Dongarra,et al. Mixed-precision block gram Schmidt orthogonalization , 2015, ScalA '15.
[3] G. Stewart,et al. Reorthogonalization and stable algorithms for updating the Gram-Schmidt QR factorization , 1976 .
[4] Erin C. Carson. An Adaptive $s$-step Conjugate Gradient Algorithm with Dynamic Basis Updating , 2019, ArXiv.
[5] Denis Vanderstraeten,et al. An accurate parallel block Gram-Schmidt algorithm without reorthogonalization , 2000, Numerical Linear Algebra with Applications.
[6] H. Walker. Implementation of the GMRES method using householder transformations , 1988 .
[7] Luke N. Olson,et al. Node-Aware Improvements to Allreduce , 2019, 2019 IEEE/ACM Workshop on Exascale MPI (ExaMPI).
[8] G. W. Stewart,et al. Matrix Algorithms: Volume 1, Basic Decompositions , 1998 .
[9] Stefano Zampini,et al. KSPHPDDM and PCHPDDM: Extending PETSc with advanced Krylov methods and robust multilevel overlapping Schwarz preconditioners , 2021, Comput. Math. Appl..
[10] W. Jalbyf,et al. STABILITY ANALYSIS AND IMPROVEMENT OF THE BLOCK GRAM-SCHMIDT ALGORITHM , .
[11] James Demmel,et al. Communication lower bounds and optimal algorithms for numerical linear algebra*† , 2014, Acta Numerica.
[12] B. Parlett. The Symmetric Eigenvalue Problem , 1981 .
[13] Yusaku Yamamoto,et al. Roundoff error analysis of the Cholesky QR2 algorithm , 2015 .
[14] Martin H. Gutknecht,et al. Updating the QR decomposition of block tridiagonal and block Hessenberg matrices generated by block Krylov space methods , 2005 .
[15] Daniel B. Szyld,et al. Block Krylov Subspace Methods for Functions of Matrices II: Modified Block FOM , 2020, SIAM J. Matrix Anal. Appl..
[16] D. O’Leary. The block conjugate gradient algorithm and related methods , 1980 .
[17] Miroslav Rozlozník,et al. Modified Gram-Schmidt (MGS), Least Squares, and Backward Stability of MGS-GMRES , 2006, SIAM J. Matrix Anal. Appl..
[18] L. Giraud,et al. When modified Gram–Schmidt generates a well‐conditioned set of vectors , 2002 .
[19] Christopher C. Paige,et al. Loss and Recapture of Orthogonality in the Modified Gram-Schmidt Algorithm , 1992, SIAM J. Matrix Anal. Appl..
[20] James Demmel,et al. Communication-optimal Parallel and Sequential QR and LU Factorizations , 2008, SIAM J. Sci. Comput..
[21] Laura Grigori,et al. Enlarged Krylov Subspace Conjugate Gradient Methods for Reducing Communication , 2016, SIAM J. Matrix Anal. Appl..
[22] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[23] G. W. Stewart,et al. A Krylov-Schur Algorithm for Large Eigenproblems , 2001, SIAM J. Matrix Anal. Appl..
[24] Yusaku Yamamoto,et al. Backward error analysis of the AllReduce algorithm for householder QR decomposition , 2011, Japan Journal of Industrial and Applied Mathematics.
[25] Mark Hoemmen,et al. Communication-avoiding Krylov subspace methods , 2010 .
[26] W. Marsden. I and J , 2012 .
[27] Yusaku Yamamoto,et al. Shifted Cholesky QR for Computing the QR Factorization of Ill-Conditioned Matrices , 2018, SIAM J. Sci. Comput..
[28] T. Sakurai,et al. A projection method for generalized eigenvalue problems using numerical integration , 2003 .
[29] JESSE L. BARLOW,et al. Block Modified Gram-Schmidt Algorithms and Their Analysis , 2019, SIAM J. Matrix Anal. Appl..
[30] R. Morgan. Restarted block-GMRES with deflation of eigenvalues , 2005 .
[31] Nicholas J. Higham,et al. INVERSE PROBLEMS NEWSLETTER , 1991 .
[32] Shreyas Ananthan,et al. Low synchronization Gram–Schmidt and generalized minimal residual algorithms , 2020, Numer. Linear Algebra Appl..
[33] Xiaobai Sun,et al. Aggregations of Elementary Transformations , 1996 .
[34] Julien Langou,et al. Rounding error analysis of the classical Gram-Schmidt orthogonalization process , 2005, Numerische Mathematik.
[35] C. Loan,et al. A Storage-Efficient $WY$ Representation for Products of Householder Transformations , 1989 .
[36] B. Vital. Etude de quelques methodes de resolution de problemes lineaires de grande taille sur multiprocesseur , 1990 .
[37] L. Minah Yang,et al. Mixed-Precision analysis of Householder QR Algorithms , 2019, ArXiv.
[38] Axel Ruhe. Numerical aspects of gram-schmidt orthogonalization of vectors , 1983 .
[39] Eric de Sturler,et al. Recycling Krylov Subspaces for Sequences of Linear Systems , 2006, SIAM J. Sci. Comput..
[40] Jesse L. Barlow,et al. Reorthogonalized block classical Gram–Schmidt , 2011, Numerische Mathematik.
[41] M. Gutknecht. BLOCK KRYLOV SPACE METHODS FOR LINEAR SYSTEMS WITH MULTIPLE RIGHT-HAND SIDES : AN , 2005 .
[42] Jack J. Dongarra,et al. Mixed-Precision Cholesky QR Factorization and Its Case Studies on Multicore CPU with Multiple GPUs , 2015, SIAM J. Sci. Comput..
[43] Anthony T. Chronopoulos,et al. An Efficient Parallel Algorithm for Extreme Eigenvalues of Sparse Nonsymmetric Matrices , 1992, Int. J. High Perform. Comput. Appl..
[44] Stefan Güttel,et al. Convergence of Restarted Krylov Subspace Methods for Stieltjes Functions of Matrices , 2014, SIAM J. Matrix Anal. Appl..
[45] Walter Gander,et al. Algorithms for the QR-Decomposition , 2003 .
[46] Julien Langou,et al. A note on the error analysis of classical Gram–Schmidt , 2006, Numerische Mathematik.
[47] Erin Carson,et al. Communication-Avoiding Krylov Subspace Methods in Theory and Practice , 2015 .
[48] G. W. Stewart. Block Gram--Schmidt Orthogonalization , 2008, SIAM J. Sci. Comput..
[49] Walter Hoffmann,et al. Iterative algorithms for Gram-Schmidt orthogonalization , 1989, Computing.
[50] N. Abdelmalek. Round off error analysis for Gram-Schmidt method and solution of linear least squares problems , 1971 .
[51] V. Simoncini,et al. Convergence properties of block GMRES and matrix polynomials , 1996 .
[52] Andrew V. Knyazev,et al. Toward the Optimal Preconditioned Eigensolver: Locally Optimal Block Preconditioned Conjugate Gradient Method , 2001, SIAM J. Sci. Comput..
[53] Stefan Güttel,et al. Efficient and Stable Arnoldi Restarts for Matrix Functions Based on Quadrature , 2014, SIAM J. Matrix Anal. Appl..
[54] Stefan Güttel,et al. Deflated Restarting for Matrix Functions , 2011, SIAM J. Matrix Anal. Appl..
[55] S. Güttel. Rational Krylov approximation of matrix functions: Numerical methods and optimal pole selection , 2013 .
[56] Ichitaro Yamazaki,et al. Low-synchronization orthogonalization schemes for s-step and pipelined Krylov solvers in Trilinos , 2020, PPSC.
[57] Elizabeth R. Jessup,et al. On Improving Linear Solver Performance: A Block Variant of GMRES , 2005, SIAM J. Sci. Comput..
[58] Walter Gander,et al. Gram‐Schmidt orthogonalization: 100 years and more , 2013, Numer. Linear Algebra Appl..
[59] Å. Björck. Solving linear least squares problems by Gram-Schmidt orthogonalization , 1967 .
[60] Gene H. Golub,et al. The block Lanczos method for computing eigenvalues , 2007, Milestones in Matrix Computation.
[61] M. Sadkane. Block-Arnoldi and Davidson methods for unsymmetric large eigenvalue problems , 1993 .