Reconstructing Ecological Niche Evolution When Niches Are Incompletely Characterized

&NA; Evolutionary dynamics of abiotic ecological niches across phylogenetic history can shed light on large‐scale biogeographic patterns, macroevolutionary rate shifts, and the relative ability of lineages to respond to global change. An unresolved question is how best to represent and reconstruct evolution of these complex traits at coarse spatial scales through time. Studies have approached this question by integrating phylogenetic comparative methods with niche estimates inferred from correlative and other models. However, methods for estimating niches often produce incomplete characterizations, as they are inferred from present‐day distributions that may be limited in full expression of the fundamental ecological niche by biotic interactions, dispersal limitations, and the existing set of environmental conditions. Here, we test whether incomplete niche characterizations inherent in most estimates of species' niches bias phylogenetic reconstructions of niche evolution, using simulations of virtual species with known niches. Results establish that incompletely characterized niches inflate estimates of evolutionary change and lead to error in ancestral state reconstructions. Our analyses also provide a potential mechanism to explain the frequent observation that maximum thermal tolerances are more conserved than minimum thermal tolerances: populations and species experience more spatial variation in minimum temperature than in maximum temperature across their distributions and, consequently, may experience stronger diversifying selection for cold tolerance.

[1]  D. Alvarado-Serrano,et al.  Ecological niche models in phylogeographic studies: applications, advances and precautions , 2014, Molecular ecology resources.

[2]  John-Arvid Grytnes,et al.  Niche conservatism as an emerging principle in ecology and conservation biology. , 2010, Ecology letters.

[3]  P. Marquet,et al.  Heat freezes niche evolution. , 2013, Ecology letters.

[4]  A. Peterson,et al.  Ecological niche and phylogeography elucidate complex biogeographic patterns in Loxosceles rufescens (Araneae, Sicariidae) in the Mediterranean Basin , 2014, BMC Evolutionary Biology.

[5]  R. Freckleton,et al.  Phylogenetic comparative approaches for studying niche conservatism , 2010, Journal of evolutionary biology.

[6]  E. Matthysen,et al.  Niche conservatism among non-native vertebrates in Europe and North America , 2015 .

[7]  Liam J. Revell,et al.  phytools: an R package for phylogenetic comparative biology (and other things) , 2012 .

[8]  M. Turelli,et al.  Environmental Niche Equivalency versus Conservatism: Quantitative Approaches to Niche Evolution , 2008, Evolution; international journal of organic evolution.

[9]  Michael J. Sanderson,et al.  TESTING FOR DIFFERENT RATES OF CONTINUOUS TRAIT EVOLUTION USING LIKELIHOOD , 2006, Evolution; international journal of organic evolution.

[10]  A. Peterson,et al.  Phylogenetic perspective on ecological niche evolution in american blackbirds (Family Icteridae) , 2008 .

[11]  Susanne A. Fritz,et al.  Global variation in thermal physiology of birds and mammals: evidence for phylogenetic niche conservatism only in the tropics , 2015 .

[12]  A. Peterson,et al.  Impacts of Niche Breadth and Dispersal Ability on Macroevolutionary Patterns , 2016, The American Naturalist.

[13]  Robert P. Anderson,et al.  Ecological Niches and Geographic Distributions , 2011 .

[14]  W. Jetz,et al.  Characterizing and predicting species distributions across environments and scales: Argentine ant occurrences in the eye of the beholder , 2009 .

[15]  M. Suchard,et al.  Bayesian Phylogenetics with BEAUti and the BEAST 1.7 , 2012, Molecular biology and evolution.

[16]  L. Revell,et al.  Phylogenetic signal, evolutionary process, and rate. , 2008, Systematic biology.

[17]  Jorge Soberón Grinnellian and Eltonian niches and geographic distributions of species. , 2007, Ecology letters.

[18]  T. Garland,et al.  TESTING FOR PHYLOGENETIC SIGNAL IN COMPARATIVE DATA: BEHAVIORAL TRAITS ARE MORE LABILE , 2003, Evolution; international journal of organic evolution.

[19]  A. F. Powell,et al.  A comprehensive species-level molecular phylogeny of the New World blackbirds (Icteridae). , 2014, Molecular phylogenetics and evolution.

[20]  M. Donoghue,et al.  Combining historical biogeography with niche modeling in the Caprifolium clade of Lonicera (Caprifoliaceae, Dipsacales). , 2010, Systematic biology.

[21]  Luke J. Harmon,et al.  GEIGER: investigating evolutionary radiations , 2008, Bioinform..

[22]  Miguel B. Araújo,et al.  Life on a tropical planet: niche conservatism and the global diversity gradient , 2013 .

[23]  M. Pagel,et al.  Phylogenetic Analysis and Comparative Data: A Test and Review of Evidence , 2002, The American Naturalist.

[24]  Harris David,et al.  A statistical explanation of MaxEnt for ecologists , 2013 .

[25]  A. Peterson Predicting the Geography of Species’ Invasions via Ecological Niche Modeling , 2003, The Quarterly Review of Biology.

[26]  R. A. Pyron,et al.  Can the tropical conservatism hypothesis explain temperate species richness patterns? An inverse latitudinal biodiversity gradient in the New World snake tribe Lampropeltini , 2009 .

[27]  J. Felsenstein Phylogenies and the Comparative Method , 1985, The American Naturalist.

[28]  Thomas Petzoldt,et al.  simecol : An Object-Oriented Framework for Ecological Modeling in R , 2007 .

[29]  N. Rank,et al.  INFERRING THE PAST AND PRESENT CONNECTIVITY ACROSS THE RANGE OF A NORTH AMERICAN LEAF BEETLE: COMBINING ECOLOGICAL NICHE MODELING AND A GEOGRAPHICALLY EXPLICIT MODEL OF COALESCENCE , 2014, Evolution; international journal of organic evolution.

[30]  S. Reddy,et al.  Comparative Phyloclimatic Analysis and Evolution of Ecological Niches in the Scimitar Babblers (Aves: Timaliidae: Pomatorhinus) , 2013, PloS one.

[31]  Ignacio Quintero,et al.  Rates of projected climate change dramatically exceed past rates of climatic niche evolution among vertebrate species. , 2013, Ecology letters.

[32]  William Godsoe,et al.  I can't define the niche but I know it when I see it: a formal link between statistical theory and the ecological niche , 2010 .

[33]  R. FitzJohn,et al.  Model Adequacy and the Macroevolution of Angiosperm Functional Traits , 2014, bioRxiv.

[34]  Campbell O. Webb,et al.  Niche evolution and adaptive radiation: testing the order of trait divergence. , 2006, Ecology.

[35]  J. Losos Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species. , 2008, Ecology letters.

[36]  R. A. Pyron,et al.  Phylogenetic niche conservatism and the evolutionary basis of ecological speciation , 2015, Biological reviews of the Cambridge Philosophical Society.

[37]  Michelle E. Afkhami,et al.  Mutualist-mediated effects on species' range limits across large geographic scales. , 2014, Ecology letters.

[38]  D. Bolnick,et al.  Mistaking geography for biology: inferring processes from species distributions. , 2014, Trends in ecology & evolution.

[39]  W. Godsoe Regional variation exaggerates ecological divergence in niche models. , 2010, Systematic biology.

[40]  W. Thuiller,et al.  Phylogenetic niche conservatism - common pitfalls and ways forward. , 2015, Functional ecology.

[41]  J. Wiens,et al.  Niche Conservatism Drives Elevational Diversity Patterns in Appalachian Salamanders , 2010, The American Naturalist.

[42]  Walter Jetz,et al.  Space versus phylogeny: disentangling phylogenetic and spatial signals in comparative data , 2009, Proceedings of the Royal Society B: Biological Sciences.

[43]  Margaret E K Evans,et al.  Climate, Niche Evolution, and Diversification of the “Bird‐Cage” Evening Primroses (Oenothera, Sections Anogra and Kleinia) , 2008, The American Naturalist.

[44]  J. Diniz‐Filho,et al.  Hidden patterns of phylogenetic non-stationarity overwhelm comparative analyses of niche conservatism and divergence , 2010 .

[45]  L. Revell,et al.  Testing quantitative genetic hypotheses about the evolutionary rate matrix for continuous characters , 2008 .

[46]  B. Lieberman,et al.  Climate change and marine molluscs of the western North Atlantic: future prospects and perils , 2014 .

[47]  J. Diniz‐Filho,et al.  Macroevolutionary dynamics in environmental space and the latitudinal diversity gradient in New World birds , 2007, Proceedings of the Royal Society B: Biological Sciences.

[48]  M. Araújo,et al.  Equilibrium of species’ distributions with climate , 2005 .

[49]  J. L. Parra,et al.  Very high resolution interpolated climate surfaces for global land areas , 2005 .

[50]  J. Felsenstein Phylogenies and quantitative characters , 1988 .

[51]  M. Papes,et al.  Tracking a Medically Important Spider: Climate Change, Ecological Niche Modeling, and the Brown Recluse (Loxosceles reclusa) , 2011, PloS one.

[52]  Jorge Soberón,et al.  Mechanistic and Correlative Models of Ecological Niches , 2015 .

[53]  A. Peterson,et al.  The crucial role of the accessible area in ecological niche modeling and species distribution modeling , 2011 .

[54]  José Alexandre Felizola Diniz-Filho,et al.  Climate, Niche Conservatism, and the Global Bird Diversity Gradient , 2007, The American Naturalist.

[55]  C. Yesson,et al.  Phyloclimatic modeling: combining phylogenetics and bioclimatic modeling. , 2006, Systematic biology.

[56]  D. Silvestro,et al.  Measurement errors should always be incorporated in phylogenetic comparative analysis , 2015 .

[57]  M. Fortin,et al.  Measuring ecological niche overlap from occurrence and spatial environmental data , 2012 .

[58]  Robert J. Hijmans,et al.  Geographic Data Analysis and Modeling , 2015 .

[59]  David R. B. Stockwell,et al.  Future projections for Mexican faunas under global climate change scenarios , 2002, Nature.

[60]  C. Graham,et al.  INTEGRATING PHYLOGENETICS AND ENVIRONMENTAL NICHE MODELS TO EXPLORE SPECIATION MECHANISMS IN DENDROBATID FROGS , 2004, Evolution; international journal of organic evolution.

[61]  M. Crisp,et al.  Phylogenetic niche conservatism: what are the underlying evolutionary and ecological causes? , 2012, The New phytologist.

[62]  Walter Jetz,et al.  Phylogenetic conservatism of environmental niches in mammals , 2011, Proceedings of the Royal Society B: Biological Sciences.

[63]  J. Wiens,et al.  Accelerated rates of climatic-niche evolution underlie rapid species diversification. , 2010, Ecology letters.

[64]  D. Nogues‐Bravo,et al.  Predicting the past distribution of species climatic niches. , 2009 .

[65]  M. Pagel Inferring the historical patterns of biological evolution , 1999, Nature.

[66]  V. Barve,et al.  Variation in niche and distribution model performance: The need for a priori assessment of key causal factors , 2012 .

[67]  A. Peterson,et al.  CLIMATE‐DRIVEN DIVERSIFICATION AND PLEISTOCENE REFUGIA IN PHILIPPINE BIRDS: EVIDENCE FROM PHYLOGEOGRAPHIC STRUCTURE AND PALEOENVIRONMENTAL NICHE MODELING , 2014, Evolution; international journal of organic evolution.

[68]  A. Townsend Peterson,et al.  Constraints on interpretation of ecological niche models by limited environmental ranges on calibration areas , 2012 .

[69]  Robert K. Colwell,et al.  Species Richness and Evolutionary Niche Dynamics: A Spatial Pattern–Oriented Simulation Experiment , 2007, The American Naturalist.

[70]  D. Penny The comparative method in evolutionary biology , 1992 .

[71]  T. Garland,et al.  Within-species variation and measurement error in phylogenetic comparative methods. , 2007, Systematic biology.