Condensation Heat Transfer on Enhanced Surface Tubes: Experimental Results and Predictive Theory

Condensation heat transfer in a bundle of horizontal enhanced surface copper tubes (Gewa C+ tubes) has been experimentally investigated, and a comparison with trapezoidal shaped fin tubes with several fin spacing has been made. These tubes have a specific surface three-dimensional geometry (notched fins) and the fluids used are either pure refrigerant (HFC134a) or binary mixtures of refrigerants (HFC23/HFC134a). For the pure fluid and a Gewa C+ single tube, the results were analyzed with a specifically developed model, taking into account both gravity and surface tension effects. For the bundle and for a pure fluid, the inundation of the lowest tubes has a strong effect on the Gewa C+ tube performances contrary to the finned tubes. For the mixture, the heat transfer coefficient decreases dramatically for the Gewa C+ tube.

[1]  Romano Gregorig,et al.  Hautkondensation an feingewellten Oberflächen bei Berücksichtigung der Oberflächenspannungen , 1954 .

[2]  Jonathan Rose,et al.  An approximate equation for the vapour-side heat-transfer coefficient for condensation on low-finned tubes , 1994 .

[3]  Kunio Hijikata,et al.  Experimental study on condensation heat transfer enhancement by various kinds of integral finned tubes. , 1990 .

[4]  Hiroshi Honda,et al.  Film Condensation of R-113 on Staggered Bundles of Horizontal Finned Tubes , 1992 .

[5]  S. T. Keswani,et al.  INVESTIGATION OF SURFACE TENSION AND GRAVITY EFFECTS IN FILM CONDENSATION , 1982 .

[6]  H. Honda,et al.  A prediction method for heat transfer during film condensation on horizontal low integral-fin tubes , 1987 .

[7]  Hiroshi Honda,et al.  Film condensation of R-113 on in-line bundles of horizontal finned tubes , 1991 .

[8]  Ralph L. Webb,et al.  Row Effect for R-11 Condensation on Enhanced Tubes , 1990 .

[9]  Robert J. Moffat,et al.  Describing the Uncertainties in Experimental Results , 1988 .

[10]  R. Webb,et al.  Prediction of film condensation on horizontal integral fin tubes , 1990 .

[11]  Thomas Adamek,et al.  Bestimmung der Kondensationsgrößen auf feingewellten Oberflächen zur Auslegung optimaler Wandprofile , 1981 .

[12]  C. C. Wang,et al.  Condensation of R-134a on enhanced tubes , 1994 .

[13]  N. Takata,et al.  Condensation of downward-flowing zeotropic mixture HCFC-123/HFC-134a on a staggered bundle of horizontal low-finned tubes , 1997 .

[14]  V. Gnielinski New equations for heat and mass transfer in turbulent pipe and channel flow , 1976 .

[15]  Hiroshi Honda,et al.  Optimization of fin geometry of a horizontal low-finned condenser tube , 1994 .

[16]  Hiroshi Honda,et al.  Effect of a Circumferential Rib on Film Condensation on a Horizontal Two-Dimensional Fin Tube , 1995 .

[17]  K. Hijikata,et al.  CONDENSATION OF AZEOTROPIC AND NONAZEOTROPIC BINARY VAPOR MIXTURES , 1990 .

[18]  Ralph L. Webb,et al.  An Analytical Model to Predict Condensate Retention on Horizontal Integral-Fin Tubes , 1985 .

[19]  André Bontemps,et al.  Condensation heat transfer of a pure fluid and binary mixture outside a bundle of smooth horizontal tubes. Comparison of experimental results and a classical model , 2001 .

[20]  T. M. Rudy,et al.  Prediction of the Condensation Coefficient on Horizontal Integral-Fin Tubes , 1985 .

[21]  L. K. Sreepathi,et al.  Heat Transfer During Film Condensation of R-123 Vapour on Horizontal Integral-Fin Tubes , 1996 .