Leveraging Side Observations in Stochastic Bandits
暂无分享,去创建一个
Marc Lelarge | Branislav Kveton | Stéphane Caron | Smriti Bhagat | B. Kveton | M. Lelarge | Smriti Bhagat | S. Caron
[1] Peter Auer,et al. The Nonstochastic Multiarmed Bandit Problem , 2002, SIAM J. Comput..
[2] Peter Auer,et al. Finite-time Analysis of the Multiarmed Bandit Problem , 2002, Machine Learning.
[3] Krishna P. Gummadi,et al. On the evolution of user interaction in Facebook , 2009, WOSN '09.
[4] Aurélien Garivier,et al. Parametric Bandits: The Generalized Linear Case , 2010, NIPS.
[5] David S. Johnson,et al. Approximation algorithms for combinatorial problems , 1973, STOC.
[6] Thomas P. Hayes,et al. Stochastic Linear Optimization under Bandit Feedback , 2008, COLT.
[7] Krishna P. Gummadi,et al. Analyzing facebook privacy settings: user expectations vs. reality , 2011, IMC '11.
[8] Martin Ester,et al. A matrix factorization technique with trust propagation for recommendation in social networks , 2010, RecSys '10.
[9] Shie Mannor,et al. From Bandits to Experts: On the Value of Side-Observations , 2011, NIPS.
[10] Csaba Szepesvári,et al. –armed Bandits , 2022 .
[11] John N. Tsitsiklis,et al. Linearly Parameterized Bandits , 2008, Math. Oper. Res..
[12] Csaba Szepesvári,et al. Tuning Bandit Algorithms in Stochastic Environments , 2007, ALT.
[13] Wei Chu,et al. A contextual-bandit approach to personalized news article recommendation , 2010, WWW '10.
[14] H. Vincent Poor,et al. Bandit problems with side observations , 2005, IEEE Transactions on Automatic Control.
[15] T. L. Lai Andherbertrobbins. Asymptotically Efficient Adaptive Allocation Rules , 1985 .
[16] Guangdong Feng,et al. A Tensor Based Method for Missing Traffic Data Completion , 2013 .
[17] H. Robbins. Some aspects of the sequential design of experiments , 1952 .
[18] Deepayan Chakrabarti,et al. Multi-armed bandit problems with dependent arms , 2007, ICML '07.
[19] Peter Auer,et al. Using Confidence Bounds for Exploitation-Exploration Trade-offs , 2003, J. Mach. Learn. Res..
[20] Sewoong Oh,et al. A Gradient Descent Algorithm on the Grassman Manifold for Matrix Completion , 2009, ArXiv.