Unscrambling light—automatically undoing strong mixing between modes

Propagation of light beams through scattering or multimode systems may lead to the randomization of the spatial coherence of the light. Although information is not lost, its recovery requires a coherent interferometric reconstruction of the original signals, which have been scrambled into the modes of the scattering system. Here we show that we can automatically unscramble optical beams that have been arbitrarily mixed in a multimode waveguide, undoing the scattering and mixing between the spatial modes through a mesh of silicon photonics tuneable beam splitters. Transparent light detectors integrated in a photonic chip are used to directly monitor the evolution of each mode along the mesh, allowing sequential tuning and adaptive individual feedback control of each beam splitter. The entire mesh self-configures automatically through a progressive tuning algorithm and resets itself after significantly perturbing the mixing, without turning off the beams. We demonstrate information recovery by the simultaneous unscrambling, sorting and tracking of four mixed modes, with residual cross-talk of −20 dB between the beams. Circuit partitioning assisted by transparent detectors enables scalability to meshes with a higher port count and to a higher number of modes without a proportionate increase in the control complexity. The principle of self-configuring and self-resetting in optical systems should be applicable in a wide range of optical applications.

[1]  Reck,et al.  Experimental realization of any discrete unitary operator. , 1994, Physical review letters.

[2]  G. Agrawal,et al.  Nonlinear optical phenomena in silicon waveguides: modeling and applications. , 2007, Optics express.

[3]  A. Mosk,et al.  Focusing coherent light through opaque strongly scattering media. , 2007, Optics letters.

[4]  T. Baehr‐Jones,et al.  Photodetection in silicon beyond the band edge with surface states. , 2007, Optics express.

[5]  Drew Seils,et al.  Optimal design , 2007 .

[6]  Xianshu Luo,et al.  Cavity-enhanced photocurrent generation by 1.55 μm wavelengths linear absorption in a p-i-n diode embedded silicon microring resonator , 2009 .

[7]  C. R. Doerr,et al.  Proposed Architecture for MIMO Optical Demultiplexing Using Photonic Integration , 2011, IEEE Photonics Technology Letters.

[8]  G. Lerosey,et al.  Controlling waves in space and time for imaging and focusing in complex media , 2012, Nature Photonics.

[9]  A. Gnauck,et al.  Mode-multiplexed 6×20-GBd QPSK transmission over 1200-km DGD-compensated few-mode fiber , 2012, OFC/NFOEC.

[10]  A. Gnauck,et al.  Mode-Division Multiplexing Over 96 km of Few-Mode Fiber Using Coherent 6 $\,\times\,$6 MIMO Processing , 2012, Journal of Lightwave Technology.

[11]  P. J. Winzer,et al.  Space-division multiplexing and all-optical MIMO demultiplexing using a photonic integrated circuit , 2012, OFC/NFOEC.

[12]  David A B Miller,et al.  Reconfigurable add-drop multiplexer for spatial modes. , 2013, Optics express.

[13]  David A. B. Miller,et al.  Self-configuring universal linear optical component [Invited] , 2013, 1303.4602.

[14]  A. Crespi,et al.  Integrated multimode interferometers with arbitrary designs for photonic boson sampling , 2013, Nature Photonics.

[15]  David A. B. Miller,et al.  Establishing Optimal Wave Communication Channels Automatically , 2013, Journal of Lightwave Technology.

[16]  D. Miller,et al.  Self-aligning universal beam coupler. , 2013, Optics express.

[17]  Michal Lipson,et al.  WDM-compatible mode-division multiplexing on a silicon chip , 2014, Nature Communications.

[18]  M. Carminati,et al.  Non-Invasive On-Chip Light Observation by Contactless Waveguide Conductivity Monitoring , 2014, IEEE Journal of Selected Topics in Quantum Electronics.

[19]  Stefan Nolte,et al.  Supersymmetric mode converters , 2014, Nature Communications.

[20]  Marc Sorel,et al.  Non-invasive monitoring and control in silicon photonics using CMOS integrated electronics , 2014, 1405.5794.

[21]  Ming Lu,et al.  A 60 Gb/s Mdm-wdm Si Photonic Link with < 0.7 Db Power Penalty per Channel References and Links , 2022 .

[22]  J. O'Brien,et al.  Universal linear optics , 2015, Science.

[23]  Stefano Grillanda,et al.  Light-induced metal-like surface of silicon photonic waveguides , 2015, Nature Communications.

[24]  David A. B. Miller,et al.  Sorting out light , 2015, Science.

[25]  Tomáš Čižmár,et al.  Seeing through chaos in multimode fibres , 2015, Nature Photonics.

[26]  Jian Wang,et al.  Monolithically integrated 64‐channel silicon hybrid demultiplexer enabling simultaneous wavelength‐ and mode‐division‐multiplexing , 2015 .

[27]  David A. B. Miller,et al.  Perfect optics with imperfect components , 2015 .

[28]  K. Bergman,et al.  On-chip mode-division multiplexing switch , 2015 .

[29]  Marco Carminati,et al.  Non-Invasive Monitoring of Mode-Division Multiplexed Channels on a Silicon Photonic Chip , 2015, Journal of Lightwave Technology.

[30]  Marco Carminati,et al.  Contactless integrated photonic probe for light monitoring in indium phosphide-based devices , 2015 .

[31]  Marc Sorel,et al.  Automated Routing and Control of Silicon Photonic Switch Fabrics , 2016, IEEE Journal of Selected Topics in Quantum Electronics.

[32]  J L O'Brien,et al.  60  dB high-extinction auto-configured Mach-Zehnder interferometer. , 2016, Optics letters.

[33]  Joseph M Kahn,et al.  Direct-detection mode-division multiplexing in modal basis using phase retrieval. , 2016, Optics letters.

[34]  Yu Yu,et al.  Integrated switchable mode exchange for reconfigurable mode-multiplexing optical networks. , 2016, Optics letters.

[35]  Humphreys,et al.  An Optimal Design for Universal Multiport Interferometers , 2016, 1603.08788.

[36]  Im,et al.  Demonstration of a 4 × 4-port universal linear circuit , 2016 .

[37]  J.,et al.  All-optical spatial light modulator for reconfigurable silicon photonic circuits , 2016, 1601.06679.

[38]  A. Ribeiro,et al.  Demonstration of a 4 × 4-port self-configuring universal linear optical component , 2016, 2016 Progress in Electromagnetic Research Symposium (PIERS).

[39]  Marco Carminati,et al.  Impedance-Sensing CMOS Chip for Noninvasive Light Detection in Integrated Photonics , 2016, IEEE Transactions on Circuits and Systems II: Express Briefs.

[40]  Jens H. Schmid,et al.  Ultra‐broadband nanophotonic beamsplitter using an anisotropic sub‐wavelength metamaterial , 2016 .

[41]  Nicolas K. Fontaine,et al.  Space‐Division Multiplexing and MIMO Processing , 2016 .

[42]  Marc Sorel,et al.  4-Channel all-optical MIMO demultiplexing on a silicon chip , 2016, 2016 Optical Fiber Communications Conference and Exhibition (OFC).

[43]  Ivana Gasulla,et al.  Microwave photonics: The programmable processor , 2016 .

[44]  Daniele Melati,et al.  Reconfigurable photonic integrated mode (de)multiplexer for SDM fiber transmission. , 2016, Optics express.

[45]  Chongjin Xie,et al.  Enabling Technologies for High Spectral-Efficiency Coherent Optical Communication Networks: Zhou/Enabling Technologies for High Spectral-Efficiency Coherent Optical Communication Networks , 2016 .

[46]  Tetsuya Hayashi,et al.  Record-Low Spatial Mode Dispersion and Ultra-Low Loss Coupled Multi-Core Fiber for Ultra-Long-Haul Transmission , 2017, Journal of Lightwave Technology.

[47]  Ryohei Urata,et al.  Datacenter optics: requirements, technologies, and trends (Invited Paper) , 2017 .

[48]  Dirk Englund,et al.  Deep learning with coherent nanophotonic circuits , 2017, 2017 Fifth Berkeley Symposium on Energy Efficient Electronic Systems & Steep Transistors Workshop (E3S).

[49]  Gregory R. Steinbrecher,et al.  Quantum transport simulations in a programmable nanophotonic processor , 2015, Nature Photonics.

[50]  Marco Carminati,et al.  Design Guidelines for Contactless Integrated Photonic Probes in Dense Photonic Circuits , 2017, Journal of Lightwave Technology.