Are GRB optical afterglows relatively brighter at high z

The redshift distribution of gamma-ray bursts (GRBs) is strongly biased by selection effects. We investigate, via Monte Carlo simulations, one possible selection effect that may be modifying the Swift GRB redshift distribution. We show how telescope response times to acquire a GRB redshift may, via the Malmquist effect and GRB optical afterglow (OA) brightness distribution, introduce a bias into the average of the observed redshift distribution. It is difficult to reconcile a recently reported correlated trend between telescope response time and average redshifts unless we employ a redshift-dependent OA distribution. Simulations of this selection effect suggest that GRB OAs may have been either intrinsically brighter early in the Universe or suffered less local host galaxy extinction.

[1]  Boulder,et al.  The redshift distribution of Swift gamma‐ray bursts: evidence for evolution , 2006, astro-ph/0607618.

[2]  P. Peebles Principles of Physical Cosmology , 1993 .

[3]  S. Piranomonte,et al.  Selection effects shaping the gamma ray burst redshift distributions , 2007, 0704.2189.

[4]  Giancarlo Ghirlanda,et al.  Optical afterglows of gamma-ray bursts: a bimodal distribution? , 2008 .

[5]  Bing Zhang,et al.  Low-Luminosity Gamma-Ray Bursts as a Unique Population: Luminosity Function, Local Rate, and Beaming Factor , 2007 .

[6]  J. P. U. Fynbo,et al.  A Mean Redshift of 2.8 for Swift gamma - ray bursts , 2005 .

[7]  Brief Note: Analytical Fit to the Luminosity Distance for Flat Cosmologies with a Cosmological Constant , 1999, astro-ph/9904172.

[8]  G. Greco,et al.  Investigation of gamma-ray bursts with known redshifts: Statistical analysis of parameters , 2009 .

[9]  P. Natarajan,et al.  SN 2006aj and the Nature of Low-Luminosity Gamma-Ray Bursts , 2006, astro-ph/0603832.

[10]  Robert Chapman,et al.  How common are long gamma-ray bursts in the local Universe? , 2007, 0708.2106.

[11]  D. Blair,et al.  Simulating a stochastic background of gravitational waves from neutron star formation at cosmological distances , 2001 .

[12]  E. Rol,et al.  The Early-Time Optical Properties of Gamma-Ray Burst Afterglows , 2008 .

[13]  R. Jain,et al.  Spectropolarimetery of umbral fine structures from Hinode: evidence for magnetoconvection , 2008, 0811.1722.

[14]  Enwei LiangBing Zhang Identification of Two Categories of Optically Bright Gamma-Ray Bursts , 2005 .

[15]  S. B. Cenko,et al.  Afterglows, Redshifts, and Properties of Swift Gamma-Ray Bursts , 2005, astro-ph/0505107.

[16]  D. Coward Gamma-ray burst optical afterglow and redshift selection effects: the learning curve effect at work , 2008, 0811.3443.

[17]  D. Guetta,et al.  Where are the missing gamma-ray burst redshifts? , 2007, 0711.0242.

[18]  Gunnlaugur Bjornsson,et al.  Luminosity functions of gamma-ray burst afterglows , 2007, 0707.3432.

[19]  P. Teerikorpi OBSERVATIONAL SELECTION BIAS AFFECTING THE DETERMINATION OF THE EXTRAGALACTIC DISTANCE SCALE , 1997 .

[20]  The galaxy luminosity function and the redshift-distance controversy (A Review). , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[21]  P. Jakobsson,et al.  Observations of GRBs at high redshift , 2007, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[22]  Andrew M. Hopkins,et al.  On the Normalization of the Cosmic Star Formation History , 2006, astro-ph/0601463.

[23]  A. Berdyugin,et al.  Statistical biases in stellar astronomy: the Malmquist bias revisited , 2005 .

[24]  Bing Zhang,et al.  The Onset of Gamma-Ray Burst Afterglow , 2007 .

[25]  Principles of Physical Cosmology and an Introduction to Mathematical Cosmology , 1993 .