Incenter subdivision scheme for curve interpolation

A new geometry driven subdivision scheme for curve interpolation is presented in this paper. Given a sequence of points and associated tangent vectors, we get a smooth curve interpolating the initial points by inserting new points iteratively. The new point corresponding to an edge is the incenter of a triangle, which is formed by the edge and the two tangent lines of the two end points, so we call such scheme incenter subdivision scheme. The limit curves are proved to be shape preserving and G^1 continuous, but many numerical examples show that they are G^2 continuous and fair. Generating spiral from two-vertices G^1 Hermite data by the incenter subdivision scheme is also introduced. If all the initial points and their initial tangent vectors are sampled from a circular arc segment, the circular arc segment is reproduced. Several examples are given to demonstrate the excellent properties of the scheme.

[1]  Dereck S. Meek,et al.  G2 curve design with a pair of Pythagorean Hodograph quintic spiral segments , 2007, Comput. Aided Geom. Des..

[2]  Bruce R. Piper,et al.  Rational cubic spirals , 2008, Comput. Aided Des..

[3]  Bruce R. Piper,et al.  Interpolation with cubic spirals , 2004, Comput. Aided Geom. Des..

[4]  Dereck S. Meek,et al.  A generalisation of the Pythagorean hodograph quintic spiral , 2004 .

[5]  Nira Dyn,et al.  Convexity preservation of the four-point interpolatory subdivision scheme , 1999, Comput. Aided Geom. Des..

[6]  Zulfiqar Habib,et al.  G 2 PH QUINTIC SPIRAL TRANSITION CURVES AND THEIR APPLICATIONS , 2004 .

[7]  Pierre Vandergheynst,et al.  Non-linear subdivision using local spherical coordinates , 2003, Comput. Aided Geom. Des..

[8]  Yves Mineur,et al.  A shape controled fitting method for Bézier curves , 1998, Comput. Aided Geom. Des..

[9]  Neil A. Dodgson,et al.  An interpolating 4-point C2 ternary stationary subdivision scheme , 2002, Comput. Aided Geom. Des..

[10]  Nira Dyn,et al.  Geometrically Controlled 4-Point Interpolatory Schemes , 2005, Advances in Multiresolution for Geometric Modelling.

[11]  Said M. Easa,et al.  State of the Art of Highway Geometric Design Consistency , 1999 .

[12]  Nira Dyn,et al.  Interpolatory convexity-preserving subdivision schemes for curves and surfaces , 1992, Comput. Aided Des..

[13]  Xunnian Yang Normal based subdivision scheme for curve design , 2006, Comput. Aided Geom. Des..

[14]  Rida T. Farouki,et al.  Pythagorean-hodograph quintic transition curves of monotone curvature , 1997, Comput. Aided Des..

[15]  Zulfiqar Habib,et al.  On PH quintic spirals joining two circles with one circle inside the other , 2007, Comput. Aided Des..

[16]  Malcolm A. Sabin,et al.  A family of subdivision schemes with cubic precision , 2008, Comput. Aided Geom. Des..

[17]  Nira Dyn,et al.  A 4-point interpolatory subdivision scheme for curve design , 1987, Comput. Aided Geom. Des..

[18]  Florencio I. Utreras,et al.  Convexity-preserving interpolatory subdivision , 1994, Comput. Aided Geom. Des..

[19]  Zulfiqar Habib,et al.  G2 Pythagorean hodograph quintic transition between two circles with shape control , 2007, Comput. Aided Geom. Des..

[20]  F. Kuijt,et al.  Convexity Preserving Interpolatory Subdivision Schemes , 1998 .

[21]  Bert Jüttler,et al.  Analysis and design of Hermite subdivision schemes , 2002, The Visual Computer.

[22]  Dereck S. Meek,et al.  Planar G 2 transition with a fair Pythagorean hodograph quintic curve , 2002 .

[23]  William H. Frey,et al.  Designing Bézier conic segments with monotone curvature , 2000, Comput. Aided Geom. Des..

[24]  Gerald Farin,et al.  Curves and surfaces for computer aided geometric design , 1990 .

[25]  Dereck S. Meek,et al.  A Pythagorean hodograph quintic spiral , 1996, Comput. Aided Des..