Multiscale thermoelastic analysis of random heterogeneous materials. Part I: Microstructure characterization and homogenization of material properties

This study is concerned with the modeling of heterogeneous materials with random microstructure and understanding their thermomechanical properties. Realistic random microstructures are generated for computational analyses using random morphology description functions (RMDFs). The simulated microstructures closely resemble actual micrographs of random heterogeneous materials. It is possible to simulate a wide range of random microstructures using this method, including: (a) particles of irregular shapes and sizes embedded in a matrix phase and (b) interpenetrating phase composite microstructures in which each material phase forms an interconnected network. In this first part of the work, the simulated RMDF microstructures are characterized using statistical techniques and their homogenized material properties computed using the asymptotic expansion homogenization (AEH) method. The material properties thus obtained are compared with analytical homogenization schemes and experimental data for several different material combinations and constituent volume fractions.

[1]  Javier Segurado,et al.  A numerical approximation to the elastic properties of sphere-reinforced composites , 2002 .

[2]  Senthil S. Vel,et al.  An exact solution for the steady-state thermoelastic response of functionally graded orthotropic cylindrical shells , 2006 .

[3]  Ryuzo Watanabe,et al.  Fabrication and evaluation of PZT/Pt piezoelectric composites and functionally graded actuators , 2003 .

[4]  P. Mummery,et al.  Processing, microstructure, and physical properties of interpenetrating Al2O3/Ni composites , 2000 .

[5]  Leon Mishnaevsky,et al.  Automatic voxel-based generation of 3D microstructural FE models and its application to the damage analysis of composites , 2005 .

[6]  A. Mammoli,et al.  Finite element modelling of deformation in particulate reinforced metal matrix composites with random local microstructure variation , 1998 .

[7]  H. Awaji,et al.  Properties of multilayered mullite/Mo functionally graded materials fabricated by powder metallurgy processing , 2005 .

[8]  Salvatore Torquato,et al.  Microstructure of two-phase random media.III: The n-point matrix probability functions for fully penetrable spheres , 1983 .

[9]  Akira Kawasaki,et al.  Concept and P/M fabrication of functionally gradient materials , 1997 .

[10]  L. Gibson,et al.  The mechanical behaviour of interpenetrating phase composites – I: modelling , 2000 .

[11]  Ferdinand Verhulst Asymptotic Analysis II , 1983 .

[12]  Roberts,et al.  Structure-property correlations in model composite materials. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[13]  Stephen A. Langer,et al.  OOF: an image-based finite-element analysis of material microstructures , 2001, Comput. Sci. Eng..

[14]  Siegfried Schmauder,et al.  Self-consistent matricity model to simulate the mechanical behaviour of interpenetrating microstructures , 1999 .

[15]  S. Vel,et al.  Optimization of natural frequencies of bidirectional functionally graded beams , 2006 .

[16]  Z. Hashin Analysis of Properties of Fiber Composites With Anisotropic Constituents , 1979 .

[17]  D. Aldrich,et al.  Microstructural characterisation of interpenetrating nickel/alumina composites , 2001 .

[18]  Teubner,et al.  Transport properties of heterogeneous materials derived from Gaussian random fields: Bounds and simulation. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[19]  R. Hill A self-consistent mechanics of composite materials , 1965 .

[20]  Jin-Rae Cho,et al.  Averaging and finite-element discretization approaches in the numerical analysis of functionally graded materials , 2001 .

[21]  L. Gibson,et al.  The mechanical behaviour of interpenetrating phase composites — III: resin-impregnated porous stainless steel , 2001 .

[22]  A. Kawasaki,et al.  Functionally graded materials : design, processing and applications , 1999 .

[23]  Y. Benveniste,et al.  A new approach to the application of Mori-Tanaka's theory in composite materials , 1987 .

[24]  S. Timoshenko,et al.  Mechanics of Materials, 3rd Ed. , 1991 .

[25]  Zvi Hashin,et al.  Effective thermal expansion coefficients and specific heats of composite materials , 1970 .

[26]  Jin-Rae Cho,et al.  Optimal tailoring of 2D volume-fraction distributions for heat-resisting functionally graded materials using FDM , 2002 .

[27]  Zvi Hashin,et al.  On elastic behaviour of fibre reinforced materials of arbitrary transverse phase geometry , 1965 .

[28]  E. Sanchez-Palencia Homogenization method for the study of composite media , 1983 .

[29]  John W. Cahn,et al.  Phase Separation by Spinodal Decomposition in Isotropic Systems , 1965 .

[30]  Z. Hashin,et al.  The Elastic Moduli of Fiber-Reinforced Materials , 1964 .

[31]  S. Prager,et al.  Viscous Flow through Porous Media , 1961 .

[32]  S. Vel,et al.  Multi-objective optimization of functionally graded materials with temperature-dependent material properties , 2007 .

[33]  J. L. Nowinski,et al.  Theory of thermoelasticity with applications , 1978 .

[34]  Liu Shutian,et al.  Topology description function based method for material design , 2006 .

[35]  Yang Jiang,et al.  Preparation and characterization of W-Cu nanopowders by a homogeneous precipitation process , 2006 .

[36]  Rodney Hill,et al.  Theory of mechanical properties of fibre-strengthened materials: I. Elastic behaviour , 1964 .

[37]  G. Daehn,et al.  Co-continuous composites for high-temperature applications , 2007 .

[38]  S. Torquato,et al.  Measure of clustering in continuum percolation: Computer‐simulation of the two‐point cluster function , 1989 .

[39]  Gilles A. Francfort,et al.  Homogenization and Linear Thermoelasticity , 1983 .

[40]  Mica Grujicic,et al.  Determination of effective elastic properties of functionally graded materials using Voronoi cell finite element method , 1998 .

[41]  S. Torquato,et al.  Random Heterogeneous Materials: Microstructure and Macroscopic Properties , 2005 .

[42]  R. Lindsay NOAA ATLAS 3. The Central North Atlantic Ocean Basin and Continental Margins: Geology, Geophysics, Geochemistry and Resources, Including the Transatlantic Geotraverse (TAG), by Peter A. Rona , 1981 .

[43]  W. Brekelmans,et al.  Overall behaviour of heterogeneous elastoviscoplastic materials: effect of microstructural modelling , 2000 .

[44]  N. Kikuchi,et al.  Preprocessing and postprocessing for materials based on the homogenization method with adaptive fini , 1990 .

[45]  Yoshinari Miyamoto,et al.  Functionally Graded Materials. , 1995 .

[46]  N. Kikuchi,et al.  Simulation of the multi-scale convergence in computational homogenization approaches , 2000 .

[47]  K. Tanaka,et al.  Average stress in matrix and average elastic energy of materials with misfitting inclusions , 1973 .

[48]  Salvatore Torquato,et al.  Microstructure of two‐phase random media. I. The n‐point probability functions , 1982 .

[49]  A. Bensoussan,et al.  Asymptotic analysis for periodic structures , 1979 .

[50]  Andrei A. Gusev,et al.  Fiber packing and elastic properties of a transversely random unidirectional glass/epoxy composite , 2000 .

[51]  S. Torquato,et al.  Computer simulation results for the two-point probability function of composite media , 1988 .

[52]  Xi-Qiao Feng,et al.  Effective Elastic and Plastic Properties of Interpenetrating Multiphase Composites , 2004 .