Thermal Transistor Effect in Quantum Systems

We study a quantum system composed of three interacting qubits, each coupled to a different thermal reservoir. We show how to engineer it in order to build a quantum device that is analogous to an electronic bipolar transistor. We outline how the interaction among the qubits plays a crucial role for the appearance of the effect, also linking it to the characteristics of system-bath interactions that govern the decoherence and dissipation mechanism of the system. By comparing with previous proposals, the model considered here extends the regime of parameters where the transistor effect shows up and its robustness with respect to small variations of the coupling parameters. Moreover, our model appears to be more realistic and directly connected in terms of potential implementations to feasible setups in the domain of quantum spin chains and molecular nanomagnets.

[1]  P. Alam ‘A’ , 2021, Composites Engineering: An A–Z Guide.

[2]  Hongkun Park,et al.  Kondo resonance in a single-molecule transistor , 2002, Nature.

[3]  P. Alam ‘L’ , 2021, Composites Engineering: An A–Z Guide.

[4]  Zongfu Yu,et al.  Complete optical isolation created by indirect interband photonic transitions , 2009 .

[5]  Takhee Lee,et al.  Single Molecule Electronic Devices , 2011, Advanced materials.

[6]  Jonas I. Goldsmith,et al.  Coulomb blockade and the Kondo effect in single-atom transistors , 2002, Nature.

[7]  Baowen Li,et al.  Negative differential thermal resistance and thermal transistor , 2006 .

[8]  Sadi Carnot,et al.  Réflexions sur la puissance motrice du feu , 1978 .

[9]  Ronald Hanson,et al.  Coherent manipulation of single spins in semiconductors , 2008, Nature.

[10]  J. Pekola,et al.  Heat rectification via a superconducting artificial atom , 2019, Communications Physics.

[11]  Marco Affronte,et al.  Engineering the coupling between molecular spin qubits by coordination chemistry. , 2009, Nature nanotechnology.

[12]  P. Alam,et al.  R , 1823, The Herodotus Encyclopedia.

[13]  K. Joulain,et al.  Radiative thermal rectification using superconducting materials , 2013, 1312.3758.

[14]  Nicolas Roch,et al.  Quantum phase transition in a single-molecule quantum dot , 2008, Nature.

[15]  S. Götzinger,et al.  A single-molecule optical transistor , 2009, Nature.

[16]  J. Ordonez-Miranda,et al.  Photonic thermal diode based on superconductors , 2017 .

[17]  J. Pekola,et al.  Nonequilibrium fluctuations in quantum heat engines: theory, example, and possible solid state experiments , 2014, 1412.0898.

[18]  L. Venkataraman,et al.  Single-molecule junctions beyond electronic transport. , 2013, Nature nanotechnology.

[19]  Danna Zhou,et al.  d. , 1840, Microbial pathogenesis.

[20]  Shiro Saito,et al.  Superconducting qubit–oscillator circuit beyond the ultrastrong-coupling regime , 2016, Nature Physics.

[21]  E. Solano,et al.  Circuit quantum electrodynamics in the ultrastrong-coupling regime , 2010, 1003.2376.

[22]  Alice M. Bowen,et al.  Engineering coherent interactions in molecular nanomagnet dimers , 2015 .

[23]  A. Zettl,et al.  Solid-State Thermal Rectifier , 2006, Science.

[24]  Chem. , 2020, Catalysis from A to Z.

[25]  Francesco Petruccione,et al.  The Theory of Open Quantum Systems , 2002 .

[26]  K. Joulain,et al.  Modulation and amplification of radiative far field heat transfer: Towards a simple radiative thermal transistor , 2015, 1502.06712.

[27]  David Gelbwaser-Klimovsky,et al.  Non-equilibrium quantum heat machines , 2015, 1507.01660.

[28]  K. Kiefer,et al.  Quantum Criticality in an Ising Chain: Experimental Evidence for Emergent E8 Symmetry , 2010, Science.

[29]  Constance de Koning,et al.  Editors , 2003, Annals of Emergency Medicine.

[30]  T. Chen,et al.  Thermal Rectification in the Nonequilibrium Quantum-Dot-System , 2012, 1211.2938.

[31]  I. Dzyaloshinsky A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics , 1958 .

[32]  I. S. Eliens,et al.  Atomic spin-chain realization of a model for quantum criticality , 2016, Nature Physics.

[33]  Claudia Benedetti,et al.  Microscopic description for the emergence of collective dissipation in extended quantum systems , 2016, Scientific Reports.

[34]  S. Montangero,et al.  A quantum optical valve in a nonlinear-linear resonators junction , 2013, 1307.6493.

[35]  Ronnie Kosloff,et al.  Quantum Thermodynamics: A Dynamical Viewpoint , 2013, Entropy.

[36]  W. Kobayashi,et al.  An oxide thermal rectifier , 2009, 0910.1153.

[37]  Stefan Blügel,et al.  Atom-by-atom engineering and magnetometry of tailored nanomagnets , 2012, Nature Physics.

[38]  Antonio-José Almeida,et al.  NAT , 2019, Springer Reference Medizin.

[39]  J. Rossnagel,et al.  A single-atom heat engine , 2015, Science.

[40]  Wenjuan Zhu,et al.  Three-terminal graphene negative differential resistance devices. , 2012, ACS nano.

[41]  Franco Nori,et al.  Quantum phases in circuit QED with a superconducting qubit array , 2013, Scientific Reports.

[42]  Ronnie Kosloff,et al.  The local approach to quantum transport may violate the second law of thermodynamics , 2014, 1402.3825.

[43]  Andrew G. Glen,et al.  APPL , 2001 .

[44]  Quantum dot as thermal rectifier , 2007, cond-mat/0703514.

[45]  Gernot Schaller,et al.  Open Quantum Systems Far from Equilibrium , 2014 .