Stochastic MiniZinc

Combinatorial optimisation problems often contain uncertainty that has to be taken into account to produce realistic solutions. However, existing modelling systems either do not support uncertainty, or do not support combinatorial features, such as integer variables and non-linear constraints. This paper presents an extension of the MINIZINC modelling language that supports uncertainty. Stochastic MINIZINC enables modellers to express combinatorial stochastic problems at a high level of abstraction, independent of the stochastic solving approach. These models are translated automatically into different solver-level representations. Stochastic MINIZINC provides the first solving technology agnostic approach to stochastic modelling we are aware of.

[1]  Linus Schrage,et al.  Challenges in Adding a Stochastic Programming/Scenario Planning Capability to a General Purpose Optimization Modeling System , 2010 .

[2]  Robert Fourer,et al.  StAMPL: A Filtration-Oriented Modeling Tool for Multistage Stochastic Recourse Problems , 2009, INFORMS J. Comput..

[3]  David L. Woodruff,et al.  PySP: modeling and solving stochastic programs in Python , 2012, Mathematical Programming Computation.

[4]  Peter J. Stuckey,et al.  MiniZinc: Towards a Standard CP Modelling Language , 2007, CP.

[5]  A. M. Ireland,et al.  Scenario formulation in an algebraic modelling language , 1995, Ann. Oper. Res..

[6]  Marcel Roelofs,et al.  AIMMS - Language Reference , 2006 .

[7]  A. Ruszczynski Stochastic Programming Models , 2003 .

[8]  David L. Woodruff,et al.  Pyomo: modeling and solving mathematical programs in Python , 2011, Math. Program. Comput..

[9]  Gautam Mitra,et al.  Extending Algebraic Modelling Languages for Stochastic Programming , 2009, INFORMS J. Comput..

[10]  Pascal Van Hentenryck The OPL optimization programming language , 1999 .

[11]  Peter J. Stuckey,et al.  Search combinators , 2012, Constraints.

[12]  Warwick Harvey,et al.  Essence: A constraint language for specifying combinatorial problems , 2007, Constraints.

[13]  Toby Walsh,et al.  Stochastic Constraint Programming: A Scenario-Based Approach , 2009, Constraints.

[14]  R. Tyrrell Rockafellar,et al.  Scenarios and Policy Aggregation in Optimization Under Uncertainty , 1991, Math. Oper. Res..

[15]  Philip Kilby,et al.  Vehicle Routing , 2006, Handbook of Constraint Programming.

[16]  Pierre Flener,et al.  Introducing ESRA, a Relational Language for Modelling Combinatorial Problems , 2003, CP.

[17]  Jean-Philippe Vial,et al.  Automatic Formulation of Stochastic Programs Via an Algebraic Modeling Language , 2007, Comput. Manag. Sci..

[18]  Ian P. Gent,et al.  Tailoring Solver-Independent Constraint Models: A Case Study with Essence' and Minion , 2007, SARA.

[19]  Toby Walsh,et al.  Stochastic Constraint Programming , 2002, ECAI.

[20]  Peter J. Stuckey,et al.  The Design of the Zinc Modelling Language , 2008, Constraints.

[21]  A. M. Ireland,et al.  On the formulation of stochastic linear programs using algebraic modelling languages , 1996, Ann. Oper. Res..

[22]  Gautam Mitra,et al.  8. A Stochastic Programming Integrated Environment , 2005, Applications of Stochastic Programming.