Methods for explaining biological systems and high-throughput data

[1]  Jürg Bähler,et al.  Regulation of transcriptome, translation, and proteome in response to environmental stress in fission yeast , 2012, Genome Biology.

[2]  Wyeth W. Wasserman,et al.  JASPAR: an open-access database for eukaryotic transcription factor binding profiles , 2004, Nucleic Acids Res..

[3]  Nils J. Nilsson,et al.  A Formal Basis for the Heuristic Determination of Minimum Cost Paths , 1968, IEEE Trans. Syst. Sci. Cybern..

[4]  Jill P. Mesirov,et al.  GSEA-P: a desktop application for Gene Set Enrichment Analysis , 2007, Bioinform..

[5]  A. Nobel,et al.  Supervised risk predictor of breast cancer based on intrinsic subtypes. , 2009, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[6]  L. Sobin,et al.  TNM Classification of Malignant Tumours , 1987, UICC International Union Against Cancer.

[7]  M. Roizen,et al.  Hallmarks of Cancer: The Next Generation , 2012 .

[8]  Jennifer Abrams,et al.  Biology of the Heat Shock Response and Protein Chaperones: Budding Yeast (Saccharomyces cerevisiae) as a Model System , 2012, Microbiology and Molecular Reviews.

[9]  Samik Ghosh,et al.  Network analyses based on comprehensive molecular interaction maps reveal robust control structures in yeast stress response pathways , 2016, npj Systems Biology and Applications.

[10]  M. Buck,et al.  Chromatin accessibility: a window into the genome , 2014, Epigenetics & Chromatin.

[11]  M. Cronin,et al.  A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. , 2004, The New England journal of medicine.

[12]  R. Küffner,et al.  Petri Nets with Fuzzy Logic (PNFL): Reverse Engineering and Parametrization , 2010, PloS one.

[13]  Catarina Costa,et al.  The YEASTRACT database: an upgraded information system for the analysis of gene and genomic transcription regulation in Saccharomyces cerevisiae , 2013, Nucleic Acids Res..

[14]  Rasko Leinonen,et al.  The sequence read archive: explosive growth of sequencing data , 2011, Nucleic Acids Res..

[15]  C. Fan,et al.  Concordance among gene-expression-based predictors for ER-positive breast cancer treated with adjuvant tamoxifen. , 2011, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[16]  Jerry Rosted Silicon Snake Oil: Second Thoughts on the Information Highway , 1995 .

[17]  Ralf Zimmer,et al.  RelExplain—integrating data and networks to explain biological processes , 2017, Bioinform..

[18]  Yoshiyuki Sakaki,et al.  Absolute quantification of the budding yeast transcriptome by means of competitive PCR between genomic and complementary DNAs , 2008, BMC Genomics.

[19]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[20]  J. Plotkin,et al.  Rate-Limiting Steps in Yeast Protein Translation , 2013, Cell.

[21]  R. Tibshirani,et al.  Diagnosis of multiple cancer types by shrunken centroids of gene expression , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[22]  David Venet,et al.  Most Random Gene Expression Signatures Are Significantly Associated with Breast Cancer Outcome , 2011, PLoS Comput. Biol..

[23]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[24]  Jeremy Leipzig,et al.  A review of bioinformatic pipeline frameworks , 2016, Briefings Bioinform..

[25]  M. J. Hatcher,et al.  Modeling Biological Systems: Principles and Applications , 1997 .

[26]  Benno Schwikowski,et al.  Discovering regulatory and signalling circuits in molecular interaction networks , 2002, ISMB.

[27]  Richard Baskerville,et al.  Information design , 2011, Eur. J. Inf. Syst..

[28]  Ramesh Ramakrishnan,et al.  High Throughput Gene Expression Measurement with Real Time PCR in a Microfluidic Dynamic Array , 2008, PloS one.

[29]  John Quackenbush,et al.  A three-gene model to robustly identify breast cancer molecular subtypes. , 2012, Journal of the National Cancer Institute.

[30]  Gianluca Bontempi,et al.  Comparison of prognostic gene expression signatures for breast cancer , 2008, BMC Genomics.

[31]  E. Fraenkel,et al.  Integrating Proteomic, Transcriptional, and Interactome Data Reveals Hidden Components of Signaling and Regulatory Networks , 2009, Science Signaling.

[32]  Nathan Shedroff,et al.  Information Interaction Design: a Unified Field Theory of Design , 2000 .

[33]  Jennifer E. Rowley,et al.  The wisdom hierarchy: representations of the DIKW hierarchy , 2007, J. Inf. Sci..

[34]  C. Grant,et al.  The Response to Heat Shock and Oxidative Stress in Saccharomyces cerevisiae , 2012, Genetics.

[35]  T. Mascher,et al.  Coevolution of ABC Transporters and Two-Component Regulatory Systems as Resistance Modules against Antimicrobial Peptides in Firmicutes Bacteria , 2011, Journal of bacteriology.

[36]  Atul J. Butte,et al.  Ten Years of Pathway Analysis: Current Approaches and Outstanding Challenges , 2012, PLoS Comput. Biol..

[37]  G. Crawford,et al.  DNase-seq: a high-resolution technique for mapping active gene regulatory elements across the genome from mammalian cells. , 2010, Cold Spring Harbor protocols.

[38]  Shu-Bing Qian,et al.  Cotranslational response to proteotoxic stress by elongation pausing of ribosomes. , 2013, Molecular cell.

[39]  Hsien-Da Huang,et al.  miRTarBase update 2014: an information resource for experimentally validated miRNA-target interactions , 2013, Nucleic Acids Res..

[40]  Merja Penttilä,et al.  Transcriptional responses of Saccharomyces cerevisiae to shift from respiratory and respirofermentative to fully fermentative metabolism. , 2011, Omics : a journal of integrative biology.

[41]  Adrian Kügel,et al.  Improved Exact Solver for the Weighted MAX-SAT Problem , 2010, POS@SAT.

[42]  M. Snyder,et al.  Charging it up: global analysis of protein phosphorylation. , 2006, Trends in genetics : TIG.

[43]  Virginia G Kaklamani,et al.  Prospective Validation of a 21-Gene Expression Assay in Breast Cancer. , 2015, The New England journal of medicine.

[44]  Purvesh Khatri,et al.  Ontological analysis of gene expression data: current tools, limitations, and open problems , 2005, Bioinform..

[45]  Daniel S. Himmelstein,et al.  Understanding multicellular function and disease with human tissue-specific networks , 2015, Nature Genetics.

[46]  Kai Li,et al.  Exploring the functional landscape of gene expression: directed search of large microarray compendia , 2007, Bioinform..

[47]  C. Perou,et al.  Gene Expression Signatures and Immunohistochemical Subtypes Add Prognostic Value to Each Other in Breast Cancer Cohorts , 2017, Clinical Cancer Research.

[48]  T. Ideker,et al.  Integrative approaches for finding modular structure in biological networks , 2013, Nature Reviews Genetics.

[49]  Cristina Mitrea,et al.  Methods and approaches in the topology-based analysis of biological pathways , 2013, Front. Physiol..

[50]  Caroline C. Friedel,et al.  Detection and correction of probe-level artefacts on microarrays , 2012, BMC Bioinformatics.

[51]  Benjamin J. Raphael,et al.  Pan-Cancer Network Analysis Identifies Combinations of Rare Somatic Mutations across Pathways and Protein Complexes , 2014, Nature Genetics.

[52]  C. Burge,et al.  Widespread regulation of translation by elongation pausing in heat shock , 2013, Molecular cell.

[53]  A. Gasch,et al.  Molecular Systems Biology Peer Review Process File a Dynamic Model of Proteome Changes Reveals New Roles for Transcript Alteration in Yeast Transaction Report , 2022 .

[54]  Sally Hunsberger,et al.  Proposal for standardized definitions for efficacy end points in adjuvant breast cancer trials: the STEEP system. , 2007, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[55]  Murray E. Jennex Re-Visiting the Knowledge Pyramid , 2009, 2009 42nd Hawaii International Conference on System Sciences.

[56]  Kwanjeera Wanichthanarak,et al.  yStreX: yeast stress expression database , 2014, Database J. Biol. Databases Curation.