Minimax relations for the partial q- colorings of a graph

Abstract A partial q-coloring of a graph is a family of q disjoint stable sets, each one representing a “color”; the largest number of colored vertices in a partial q -coloring is a number α q ( G ), extension of the stability number α ( G )= α 1 ( G ). In this note, we investigate the possibilities, for 1⩽ q ⩽ γ ( G ) , to express α q ( G ) by a minimax equality.

[1]  Alan J. Hoffman,et al.  On partitions of a partially ordered set , 1977, J. Comb. Theory, Ser. B.

[2]  D. R. Fulkerson,et al.  On balanced matrices , 1974 .

[3]  Daniel J. Kleitman,et al.  Strong Versions of Sperner's Theorem , 1976, J. Comb. Theory, Ser. A.

[4]  Curtis Greene Some Partitions Associated with a Partially Ordered Set , 1976, J. Comb. Theory, Ser. A.

[5]  K. R. Parthasarathy,et al.  Perfect product graphs , 1977, Discret. Math..

[6]  Daniel J. Kleitman,et al.  The Structure of Sperner k-Families , 1976, J. Comb. Theory, Ser. A.

[7]  László Lovász,et al.  Normal hypergraphs and the perfect graph conjecture , 1972, Discret. Math..

[8]  Alan Tucker Coloring perfect (K4 - e)-free graphs , 1987, J. Comb. Theory, Ser. B.