High‐Performance Metal‐Free Solar Cells Using Stamp Transfer Printed Vapor Phase Polymerized Poly(3,4‐Ethylenedioxythiophene) Top Anodes

The use of vapor phase polymerized poly(3,4-ethylenedioxythiophene) (VPP-PEDOT) as a metal-replacement top anode for inverted solar cells is reported. Devices with both i) standard bulk heterojunction blends of poly(3-hexylthiophene) (P3HT) donor and 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6,6)C60 (PCBM) soluble fullerene acceptor and ii) hybrid inorganic/organic TiO2/P3HT acceptor/donor active layers are studied. Stamp transfer printing methods are used to deposit both the VPP-PEDOT top anode and a work function enhancing PEDOT:polystyrenesulphonate (PEDOT:PSS) interlayer. The metal-free devices perform comparably to conventional devices with an evaporated metal top anode, yielding power conversion efficiencies of 3% for bulk heterojunction blend and 0.6% for organic/inorganic hybrid structures. These encouraging results suggest that stamp transfer printed VPP-PEDOT provides a useful addition to the electrode materials tool-box available for low temperature and non-vacuum solar cell fabrication.

[1]  D. Bradley,et al.  Influence of polymer ionization potential on the open-circuit voltage of hybrid polymer/TiO 2 solar cells , 2008 .

[2]  Donal D. C. Bradley,et al.  Hybrid nanocrystalline TiO2 solar cells with a fluorene–thiophene copolymer as a sensitizer and hole conductor , 2004 .

[3]  Ladislav Kavan,et al.  Highly efficient semiconducting TiO2 photoelectrodes prepared by aerosol pyrolysis , 1995 .

[4]  Jenny Nelson,et al.  Hybrid polymer/zinc oxide photovoltaic devices with vertically oriented ZnO nanorods and an amphiphilic molecular interface layer. , 2006, The journal of physical chemistry. B.

[5]  R. Friend,et al.  Built-in field electroabsorption spectroscopy of polymer light-emitting diodes incorporating a doped poly(3,4-ethylene dioxythiophene) hole injection layer , 1999 .

[6]  W. R. Salaneck,et al.  Transparent polymer cathode for organic photovoltaic devices , 2006 .

[7]  Marie Angelopoulos,et al.  Polymeric anodes for improved polymer light-emitting diode performance , 1997 .

[8]  Donal D. C. Bradley,et al.  The Effect of Polymer Optoelectronic Properties on the Performance of Multilayer Hybrid Polymer/TiO2 Solar Cells , 2005 .

[9]  A. Heeger,et al.  Flexible light-emitting diodes made from soluble conducting polymers , 1992, Nature.

[10]  Vishal Shrotriya,et al.  Absorption spectra modification in poly(3-hexylthiophene):methanofullerene blend thin films , 2005 .

[11]  C. Brabec,et al.  Origin of the Open Circuit Voltage of Plastic Solar Cells , 2001 .

[12]  D. Bradley,et al.  High efficiency organic light-emitting diodes with PEDOT-based conducting polymer anodes , 2008 .

[13]  J. Huang,et al.  Investigation of the Effects of Doping and Post‐Deposition Treatments on the Conductivity, Morphology, and Work Function of Poly(3,4‐ethylenedioxythiophene)/Poly(styrene sulfonate) Films , 2005 .

[14]  D. Bradley,et al.  Real‐Time Investigation of Crystallization and Phase‐Segregation Dynamics in P3HT:PCBM Solar Cells During Thermal Annealing , 2011 .

[15]  Donal D. C. Bradley,et al.  Fabrication of Highly Conductive Poly(3,4‐ethylenedioxythiophene) Films by Vapor Phase Polymerization and Their Application in Efficient Organic Light‐Emitting Diodes , 2007 .

[16]  Bernard Kippelen,et al.  Indium tin oxide-free and metal-free semitransparent organic solar cells , 2010 .

[17]  F. Krebs,et al.  High-conductivity large-area semi-transparent electrodes for polymer photovoltaics by silk screen printing and vapour-phase deposition , 2006 .

[18]  Donal D. C. Bradley,et al.  Efficient charge collection in hybrid polymer/TiO2 solar cells using poly(ethylenedioxythiophene)/polystyrene sulphonate as hole collector , 2005 .

[19]  V. Mihailetchi,et al.  Cathode dependence of the open-circuit voltage of polymer:fullerene bulk heterojunction solar cells , 2003 .

[20]  Mats Andersson,et al.  A polymer photodiode using vapour-phase polymerized PEDOT as an anode , 2006 .

[21]  F. Chen,et al.  High‐Conductivity Poly(3,4‐ethylenedioxythiophene):Poly(styrene sulfonate) Film and Its Application in Polymer Optoelectronic Devices , 2005 .

[22]  Stephen R. Forrest,et al.  Very-high-efficiency double-heterostructure copper phthalocyanine/C60 photovoltaic cells , 2001 .

[23]  Michael D. McGehee,et al.  Effects of molecular interface modification in hybrid organic-inorganic photovoltaic cells , 2007 .

[24]  Donal D. C. Bradley,et al.  Hybrid polymer/metal oxide solar cells based on ZnO columnar structures , 2006 .

[25]  D. Bradley,et al.  Nanoporous TiO2 solar cells sensitised with a fluorene?thiophene copolymer , 2004 .

[26]  High efficiency flexible ITO-free polymer/fullerene photodiodes. , 2006, Physical chemistry chemical physics : PCCP.

[27]  John E. Anthony,et al.  Spray-deposited poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) top electrode for organic solar cells , 2008 .

[28]  K. Fehse,et al.  Highly Conductive Polymer Anodes as Replacements for Inorganic Materials in High‐Efficiency Organic Light‐Emitting Diodes , 2007 .

[29]  D. Bradley,et al.  Polymer Transfer Printing: Application to Layer Coating, Pattern Definition, and Diode Dark Current Blocking , 2008 .

[30]  L. S. Roman,et al.  Quantum efficiency of exciton-to-charge generation in organic photovoltaic devices , 2001 .

[31]  Donal D. C. Bradley,et al.  Planar heterojunction organic photovoltaic diodes via a novel stamp transfer process , 2008 .

[32]  Mats Andersson,et al.  Polymer Photovoltaic Cells with Conducting Polymer Anodes , 2002 .