Nonparametric estimation and inference on conditional quantile processes
暂无分享,去创建一个
[1] Xuming He,et al. Bivariate Tensor-Product B-Splines in a Partly Linear Model , 1996 .
[2] Christine Thomas-Agnan,et al. Functional estimation under shape constraints , 1996 .
[3] H. Hotelling. Tubes and Spheres in n-Spaces, and a Class of Statistical Problems , 1939 .
[4] Pin T. Ng,et al. Quantile smoothing splines , 1994 .
[5] V. Chernozhukov,et al. QUANTILE AND PROBABILITY CURVES WITHOUT CROSSING , 2007, 0704.3649.
[6] Kjell A. Doksum,et al. Empirical Probability Plots and Statistical Inference for Nonlinear Models in the Two-Sample Case , 1974 .
[7] Victor Chernozhukov,et al. Quantile Regression Under Misspecification, with an Application to the U.S. Wage Structure , 2004 .
[8] J. Kalbfleisch. Statistical Inference Under Order Restrictions , 1975 .
[9] Mi-Ok Kim,et al. Quantile regression with varying coefficients , 2007, 0708.0471.
[10] Juan Carlos Escanciano,et al. Specification Tests of Parametric Dynamic Conditional Quantiles , 2008 .
[11] Roger Koenker,et al. Inequality constrained quantile regression , 2005 .
[12] P. Bickel. One-Step Huber Estimates in the Linear Model , 1975 .
[13] Roger Koenker,et al. Adaptive $L$-Estimation for Linear Models , 1989 .
[14] P. Hall,et al. Martingale Limit Theory and Its Application , 1980 .
[15] Elias Masry,et al. MULTIVARIATE LOCAL POLYNOMIAL REGRESSION FOR TIME SERIES:UNIFORM STRONG CONSISTENCY AND RATES , 1996 .
[16] E. Mammen,et al. Expansion for moments of regression quantiles with applications to nonparametric testing , 2013, Bernoulli.
[17] J. Bai,et al. Testing for Parameter Constancy in Linear Regressions: An Empirical Distribution Function Approach , 1996 .
[18] Xuming He. Quantile Curves without Crossing , 1997 .
[19] Alberto Abadie. Bootstrap Tests for Distributional Treatment Effects in Instrumental Variable Models , 2002 .
[20] A. Krueger,et al. Experimental Estimates of Education Production Functions , 1997 .
[21] J. Heckman,et al. Making the Most out of Programme Evaluations and Social Experiments: Accounting for Heterogeneity in Programme Impacts , 1997 .
[22] Felix Schlenk,et al. Proof of Theorem 3 , 2005 .
[23] H. Bondell,et al. Noncrossing quantile regression curve estimation. , 2010, Biometrika.
[24] P. K. Bhattacharya. On an Analog of Regression Analysis , 1963 .
[25] K. Taira. Proof of Theorem 1.3 , 2004 .
[26] Zongwu Cai,et al. Semiparametric quantile regression estimation in dynamic models with partially varying coefficients , 2012 .
[27] Z. Ying,et al. A resampling method based on pivotal estimating functions , 1994 .
[28] W. Härdle,et al. CONFIDENCE BANDS IN QUANTILE REGRESSION , 2009, Econometric Theory.
[29] R. Koenker,et al. Regression Quantiles , 2007 .
[30] Mitchell J. Mergenthaler. Nonparametrics: Statistical Methods Based on Ranks , 1979 .
[31] R. Koenker. Quantile Regression: Fundamentals of Quantile Regression , 2005 .
[32] Wolfgang Härdle,et al. Bootstrap confidence bands and partial linear quantile regression , 2012, J. Multivar. Anal..
[33] Holger Dette,et al. Non‐crossing non‐parametric estimates of quantile curves , 2008 .
[34] Jianqing Fan,et al. Robust Non-parametric Function Estimation , 1994 .
[35] Camille Sabbah,et al. UNIFORM BIAS STUDY AND BAHADUR REPRESENTATION FOR LOCAL POLYNOMIAL ESTIMATORS OF THE CONDITIONAL QUANTILE FUNCTION , 2011, Econometric Theory.
[36] R. Koenker,et al. The Gaussian hare and the Laplacian tortoise: computability of squared-error versus absolute-error estimators , 1997 .
[37] V. Chernozhukov,et al. Subsampling Inference on Quantile Regression Processes , 2005 .
[38] Sokbae Lee,et al. EFFICIENT SEMIPARAMETRIC ESTIMATION OF A PARTIALLY LINEAR QUANTILE REGRESSION MODEL , 2003, Econometric Theory.
[39] V. Chernozhukov,et al. Finite Sample Inference for Quantile Regression Models , 2006 .
[40] Zhongjun Qu,et al. Estimating Structural Changes in Regression Quantiles , 2010 .
[41] Roger Koenker,et al. Inference on the Quantile Regression Process , 2000 .
[42] P. Chaudhuri. Global nonparametric estimation of conditional quantile functions and their derivatives , 1991 .
[43] J. Angrist,et al. Instrumental Variables Estimates of the Effect of Subsidized Training on the Quantiles of Trainee Earnings , 1999 .
[44] Keith Knight,et al. Limiting distributions for $L\sb 1$ regression estimators under general conditions , 1998 .
[45] Additive Models for Quantile Regression , 2009 .
[46] Stephen G. Donald,et al. Consistent Tests for Stochastic Dominance , 2003 .
[47] Enno Mammen,et al. Estimating a Smooth Monotone Regression Function , 1991 .
[48] Sergio Firpo. Efficient Semiparametric Estimation of Quantile Treatment Effects , 2004 .
[49] Probal Chaudhuri,et al. Nonparametric Estimates of Regression Quantiles and Their Local Bahadur Representation , 1991 .
[50] Winfried Stute,et al. Conditional empirical processes , 1986 .
[51] Shakeeb Khan,et al. SEMIPARAMETRIC ESTIMATION OF A PARTIALLY LINEAR CENSORED REGRESSION MODEL , 2001, Econometric Theory.
[52] TESTING FOR STOCHASTICMONOTONICITY , 2006 .
[53] Xuming He,et al. Monotone B-Spline Smoothing , 1998 .
[54] Victor Chernozhukov,et al. Conditional Quantile Processes Based on Series or Many Regressors , 2011, Journal of Econometrics.
[55] Stephen Portnoy,et al. Bivariate quantile smoothing splines , 1998 .
[56] R. Bass,et al. Review: P. Billingsley, Convergence of probability measures , 1971 .
[57] M. C. Jones,et al. Local Linear Quantile Regression , 1998 .
[58] Stephen Portnoy,et al. On monotonicity of regression quantile functions , 2008 .
[59] Roger Koenker,et al. L-Estimation for Linear Models , 1987 .
[60] Toshio Honda,et al. Quantile regression in varying coefficient models , 2004 .
[61] Yingcun Xia,et al. UNIFORM BAHADUR REPRESENTATION FOR LOCAL POLYNOMIAL ESTIMATES OF M-REGRESSION AND ITS APPLICATION TO THE ADDITIVE MODEL , 2007, Econometric Theory.
[62] D. McFadden. Testing for Stochastic Dominance , 1989 .
[63] E. Khmaladze,et al. Martingale Approach in the Theory of Goodness-of-Fit Tests , 1982 .
[64] So K Kb. EFFICIENT SEMIPARAMETRIC ESTIMATION OF A PARTIALLY LINEAR QUANTILE REGRESSION MODEL , 2003 .
[65] M. Wand,et al. Multivariate Locally Weighted Least Squares Regression , 1994 .
[66] O. Linton,et al. Testing for Stochastic Monotonicity , 2006 .
[67] O. Linton,et al. Consistent Testing for Stochastic Dominance Under General Sampling Schemes , 2003 .
[68] C. J. Stone,et al. Consistent Nonparametric Regression , 1977 .