Nonparametric estimation and inference on conditional quantile processes

This paper presents estimation methods and asymptotic theory for the analysis of a nonparametrically specified conditional quantile process. Two estimators based on local linear regressions are proposed. The first estimator applies simple inequality constraints while the second uses rearrangement to maintain quantile monotonicity. The bandwidth parameter is allowed to vary across quantiles to adapt to data sparsity. For inference, the paper first establishes a uniform Bahadur representation and then shows that the two estimators converge weakly to the same limiting Gaussian process. As an empirical illustration, the paper considers a dataset from Project STAR and delivers two new findings.

[1]  Xuming He,et al.  Bivariate Tensor-Product B-Splines in a Partly Linear Model , 1996 .

[2]  Christine Thomas-Agnan,et al.  Functional estimation under shape constraints , 1996 .

[3]  H. Hotelling Tubes and Spheres in n-Spaces, and a Class of Statistical Problems , 1939 .

[4]  Pin T. Ng,et al.  Quantile smoothing splines , 1994 .

[5]  V. Chernozhukov,et al.  QUANTILE AND PROBABILITY CURVES WITHOUT CROSSING , 2007, 0704.3649.

[6]  Kjell A. Doksum,et al.  Empirical Probability Plots and Statistical Inference for Nonlinear Models in the Two-Sample Case , 1974 .

[7]  Victor Chernozhukov,et al.  Quantile Regression Under Misspecification, with an Application to the U.S. Wage Structure , 2004 .

[8]  J. Kalbfleisch Statistical Inference Under Order Restrictions , 1975 .

[9]  Mi-Ok Kim,et al.  Quantile regression with varying coefficients , 2007, 0708.0471.

[10]  Juan Carlos Escanciano,et al.  Specification Tests of Parametric Dynamic Conditional Quantiles , 2008 .

[11]  Roger Koenker,et al.  Inequality constrained quantile regression , 2005 .

[12]  P. Bickel One-Step Huber Estimates in the Linear Model , 1975 .

[13]  Roger Koenker,et al.  Adaptive $L$-Estimation for Linear Models , 1989 .

[14]  P. Hall,et al.  Martingale Limit Theory and Its Application , 1980 .

[15]  Elias Masry,et al.  MULTIVARIATE LOCAL POLYNOMIAL REGRESSION FOR TIME SERIES:UNIFORM STRONG CONSISTENCY AND RATES , 1996 .

[16]  E. Mammen,et al.  Expansion for moments of regression quantiles with applications to nonparametric testing , 2013, Bernoulli.

[17]  J. Bai,et al.  Testing for Parameter Constancy in Linear Regressions: An Empirical Distribution Function Approach , 1996 .

[18]  Xuming He Quantile Curves without Crossing , 1997 .

[19]  Alberto Abadie Bootstrap Tests for Distributional Treatment Effects in Instrumental Variable Models , 2002 .

[20]  A. Krueger,et al.  Experimental Estimates of Education Production Functions , 1997 .

[21]  J. Heckman,et al.  Making the Most out of Programme Evaluations and Social Experiments: Accounting for Heterogeneity in Programme Impacts , 1997 .

[22]  Felix Schlenk,et al.  Proof of Theorem 3 , 2005 .

[23]  H. Bondell,et al.  Noncrossing quantile regression curve estimation. , 2010, Biometrika.

[24]  P. K. Bhattacharya On an Analog of Regression Analysis , 1963 .

[25]  K. Taira Proof of Theorem 1.3 , 2004 .

[26]  Zongwu Cai,et al.  Semiparametric quantile regression estimation in dynamic models with partially varying coefficients , 2012 .

[27]  Z. Ying,et al.  A resampling method based on pivotal estimating functions , 1994 .

[28]  W. Härdle,et al.  CONFIDENCE BANDS IN QUANTILE REGRESSION , 2009, Econometric Theory.

[29]  R. Koenker,et al.  Regression Quantiles , 2007 .

[30]  Mitchell J. Mergenthaler Nonparametrics: Statistical Methods Based on Ranks , 1979 .

[31]  R. Koenker Quantile Regression: Fundamentals of Quantile Regression , 2005 .

[32]  Wolfgang Härdle,et al.  Bootstrap confidence bands and partial linear quantile regression , 2012, J. Multivar. Anal..

[33]  Holger Dette,et al.  Non‐crossing non‐parametric estimates of quantile curves , 2008 .

[34]  Jianqing Fan,et al.  Robust Non-parametric Function Estimation , 1994 .

[35]  Camille Sabbah,et al.  UNIFORM BIAS STUDY AND BAHADUR REPRESENTATION FOR LOCAL POLYNOMIAL ESTIMATORS OF THE CONDITIONAL QUANTILE FUNCTION , 2011, Econometric Theory.

[36]  R. Koenker,et al.  The Gaussian hare and the Laplacian tortoise: computability of squared-error versus absolute-error estimators , 1997 .

[37]  V. Chernozhukov,et al.  Subsampling Inference on Quantile Regression Processes , 2005 .

[38]  Sokbae Lee,et al.  EFFICIENT SEMIPARAMETRIC ESTIMATION OF A PARTIALLY LINEAR QUANTILE REGRESSION MODEL , 2003, Econometric Theory.

[39]  V. Chernozhukov,et al.  Finite Sample Inference for Quantile Regression Models , 2006 .

[40]  Zhongjun Qu,et al.  Estimating Structural Changes in Regression Quantiles , 2010 .

[41]  Roger Koenker,et al.  Inference on the Quantile Regression Process , 2000 .

[42]  P. Chaudhuri Global nonparametric estimation of conditional quantile functions and their derivatives , 1991 .

[43]  J. Angrist,et al.  Instrumental Variables Estimates of the Effect of Subsidized Training on the Quantiles of Trainee Earnings , 1999 .

[44]  Keith Knight,et al.  Limiting distributions for $L\sb 1$ regression estimators under general conditions , 1998 .

[45]  Additive Models for Quantile Regression , 2009 .

[46]  Stephen G. Donald,et al.  Consistent Tests for Stochastic Dominance , 2003 .

[47]  Enno Mammen,et al.  Estimating a Smooth Monotone Regression Function , 1991 .

[48]  Sergio Firpo Efficient Semiparametric Estimation of Quantile Treatment Effects , 2004 .

[49]  Probal Chaudhuri,et al.  Nonparametric Estimates of Regression Quantiles and Their Local Bahadur Representation , 1991 .

[50]  Winfried Stute,et al.  Conditional empirical processes , 1986 .

[51]  Shakeeb Khan,et al.  SEMIPARAMETRIC ESTIMATION OF A PARTIALLY LINEAR CENSORED REGRESSION MODEL , 2001, Econometric Theory.

[52]  TESTING FOR STOCHASTICMONOTONICITY , 2006 .

[53]  Xuming He,et al.  Monotone B-Spline Smoothing , 1998 .

[54]  Victor Chernozhukov,et al.  Conditional Quantile Processes Based on Series or Many Regressors , 2011, Journal of Econometrics.

[55]  Stephen Portnoy,et al.  Bivariate quantile smoothing splines , 1998 .

[56]  R. Bass,et al.  Review: P. Billingsley, Convergence of probability measures , 1971 .

[57]  M. C. Jones,et al.  Local Linear Quantile Regression , 1998 .

[58]  Stephen Portnoy,et al.  On monotonicity of regression quantile functions , 2008 .

[59]  Roger Koenker,et al.  L-Estimation for Linear Models , 1987 .

[60]  Toshio Honda,et al.  Quantile regression in varying coefficient models , 2004 .

[61]  Yingcun Xia,et al.  UNIFORM BAHADUR REPRESENTATION FOR LOCAL POLYNOMIAL ESTIMATES OF M-REGRESSION AND ITS APPLICATION TO THE ADDITIVE MODEL , 2007, Econometric Theory.

[62]  D. McFadden Testing for Stochastic Dominance , 1989 .

[63]  E. Khmaladze,et al.  Martingale Approach in the Theory of Goodness-of-Fit Tests , 1982 .

[64]  So K Kb EFFICIENT SEMIPARAMETRIC ESTIMATION OF A PARTIALLY LINEAR QUANTILE REGRESSION MODEL , 2003 .

[65]  M. Wand,et al.  Multivariate Locally Weighted Least Squares Regression , 1994 .

[66]  O. Linton,et al.  Testing for Stochastic Monotonicity , 2006 .

[67]  O. Linton,et al.  Consistent Testing for Stochastic Dominance Under General Sampling Schemes , 2003 .

[68]  C. J. Stone,et al.  Consistent Nonparametric Regression , 1977 .