Practical splitting methods for the adaptive integration of nonlinear evolution equations. Part I: Construction of optimized schemes and pairs of schemes
暂无分享,去创建一个
Winfried Auzinger | Othmar Koch | Harald Hofstätter | David Ketcheson | W. Auzinger | D. Ketcheson | O. Koch | H. Hofstätter
[1] Jacques Laskar,et al. New families of symplectic splitting methods for numerical integration in dynamical astronomy , 2012, 1208.0689.
[2] Mechthild Thalhammer,et al. Defect-based local error estimators for splitting methods, with application to Schrödinger equations, Part III: The nonlinear case , 2015, J. Comput. Appl. Math..
[3] Jean-Pierre Duval,et al. Generation of a section of conjugation classes and Lyndon word tree of limited length , 1988 .
[4] G. Quispel,et al. Splitting methods , 2002, Acta Numerica.
[5] W. Auzinger,et al. Local error structures and order conditions in terms of Lie elements for exponential splitting schemes , 2014 .
[6] Jean-Pierre Duval,et al. Génération d'une Section des Classes de Conjugaison et Arbre des Mots de Lyndon de Longueur Bornée , 1988, Theor. Comput. Sci..
[7] R. Folk,et al. Construction of high-order force-gradient algorithms for integration of motion in classical and quantum systems. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.
[8] G. Quispel,et al. Acta Numerica 2002: Splitting methods , 2002 .
[9] Fernando Casas,et al. Optimized high-order splitting methods for some classes of parabolic equations , 2011, Math. Comput..
[10] Robert I. McLachlan,et al. Composition methods in the presence of small parameters , 1995 .
[11] Colin B. Macdonald,et al. Spatially Partitioned Embedded Runge-Kutta Methods , 2013, SIAM J. Numer. Anal..
[12] E. Hairer,et al. Geometric Numerical Integration , 2022, Oberwolfach Reports.
[13] Robert I. McLachlan,et al. On the Numerical Integration of Ordinary Differential Equations by Symmetric Composition Methods , 1995, SIAM J. Sci. Comput..
[14] Mechthild Thalhammer,et al. Defect-based local error estimators for high-order splitting methods involving three linear operators , 2015, Numerical Algorithms.
[15] G. Strang. On the Construction and Comparison of Difference Schemes , 1968 .
[16] John E. Chambers,et al. Symplectic Integrators with Complex Time Steps , 2003 .
[17] Masato Hisakado,et al. A Coupled Nonlinear Schrodinger Equation and Optical Solitons , 1992 .
[18] Mechthild Thalhammer,et al. Defect-based local error estimators for splitting methods, with application to Schrödinger equations, Part II. Higher-order methods for linear problems , 2014, J. Comput. Appl. Math..
[19] Mechthild Thalhammer,et al. Defect-based local error estimators for splitting methods, with application to Schrödinger equations, Part I: The linear case , 2012, J. Comput. Appl. Math..
[20] H. Yoshida. Construction of higher order symplectic integrators , 1990 .
[21] Stéphane Descombes,et al. Splitting methods with complex times for parabolic equations , 2009 .
[22] O. Koch,et al. Embedded Split-Step Formulae for the Time Integration of Nonlinear Evolution Equations , 2010 .
[23] L. Bokut and E.S. Chibrikov. Lyndon-Shirshov words, Gro¨bner-Shirshov bases, and free Lie algebras , 2006 .
[24] Mechthild Thalhammer,et al. Embedded exponential operator splitting methods for the time integration of nonlinear evolution equations , 2013 .
[25] Fernando Casas,et al. Splitting and composition methods in the numerical integration of differential equations , 2008, 0812.0377.
[26] L. Einkemmer. Structure preserving numerical methods for the Vlasov equation , 2016, 1604.02616.
[27] S. Blanes,et al. Practical symplectic partitioned Runge--Kutta and Runge--Kutta--Nyström methods , 2002 .