Live face video vs. spoof face video: Use of moiré patterns to detect replay video attacks

With the wide deployment of face recognition systems in applications from border control to mobile device unlocking, the combat of face spoofing attacks requires increased attention; such attacks can be easily launched via printed photos, video replays and 3D masks. We address the problem of facial spoofing detection against replay attacks based on the analysis of aliasing in spoof face videos. The application domain of interest is mobile phone unlock. We analyze the moiré pattern aliasing that commonly appears during the recapture of video or photo replays on a screen in different channels (R, G, B and grayscale) and regions (the whole frame, detected face, and facial component between the nose and chin). Multi-scale LBP and DSIFT features are used to represent the characteristics of moiré patterns that differentiate a replayed spoof face from a live face (face present). Experimental results on Idiap replay-attack and CASIA databases as well as a database collected in our laboratory (RAFS), which is based on the MSU-FSD database, shows that the proposed approach is very effective in face spoof detection for both cross-database, and intra-database testing scenarios.

[1]  Isaac Amidror The Theory of the Moir Phenomenon: Volume I: Periodic Layers , 2009 .

[2]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[3]  Matti Pietikäinen,et al.  Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  Samarth Bharadwaj,et al.  Computationally Efficient Face Spoofing Detection with Motion Magnification , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops.

[5]  Sébastien Marcel,et al.  On the effectiveness of local binary patterns in face anti-spoofing , 2012, 2012 BIOSIG - Proceedings of the International Conference of Biometrics Special Interest Group (BIOSIG).

[6]  Michele Nappi,et al.  Moving face spoofing detection via 3D projective invariants , 2012, 2012 5th IAPR International Conference on Biometrics (ICB).

[7]  Matti Pietikäinen,et al.  Complementary countermeasures for detecting scenic face spoofing attacks , 2013, 2013 International Conference on Biometrics (ICB).

[8]  Sébastien Marcel,et al.  Can face anti-spoofing countermeasures work in a real world scenario? , 2013, 2013 International Conference on Biometrics (ICB).

[9]  Tieniu Tan,et al.  Live face detection based on the analysis of Fourier spectra , 2004, SPIE Defense + Commercial Sensing.

[10]  Shengcai Liao,et al.  Face liveness detection with component dependent descriptor , 2013, 2013 International Conference on Biometrics (ICB).

[11]  Massimo Tistarelli,et al.  Structural Similarity based image quality map for face recognition across plastic surgery , 2013, 2013 IEEE Sixth International Conference on Biometrics: Theory, Applications and Systems (BTAS).

[12]  Junjie Yan,et al.  A face antispoofing database with diverse attacks , 2012, 2012 5th IAPR International Conference on Biometrics (ICB).

[13]  Anil K. Jain,et al.  Unconstrained Face Recognition: Identifying a Person of Interest From a Media Collection , 2014, IEEE Transactions on Information Forensics and Security.

[14]  Matti Pietikäinen,et al.  Face spoofing detection from single images using micro-texture analysis , 2011, 2011 International Joint Conference on Biometrics (IJCB).

[15]  Isaac Amidror,et al.  The Theory of the Moiré Phenomenon , 2000, Computational Imaging and Vision.

[16]  Hong Li,et al.  A liveness detection method for face recognition based on optical flow field , 2009, 2009 International Conference on Image Analysis and Signal Processing.

[17]  Anil K. Jain,et al.  Face Spoof Detection With Image Distortion Analysis , 2015, IEEE Transactions on Information Forensics and Security.

[18]  K. Harshika Image Quality Assessment for Fake Biometric Detection : Application to Iris , Fingerprint , and Face Recognition , 2017 .

[19]  Lin Sun,et al.  Eyeblink-based Anti-Spoofing in Face Recognition from a Generic Webcamera , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[20]  Fabio Roli,et al.  Fusion of multiple clues for photo-attack detection in face recognition systems , 2011, 2011 International Joint Conference on Biometrics (IJCB).