The Littlewood-Richardson rule, and related combinatorics
暂无分享,去创建一个
[1] B. G. Wybourne,et al. Symmetry principles and atomic spectroscopy , 1970 .
[2] Jeffrey B. Remmel,et al. A simple proof of the Littlewood-Richardson rule and applications , 1998, Discret. Math..
[3] Donald E. Knuth,et al. PERMUTATIONS, MATRICES, AND GENERALIZED YOUNG TABLEAUX , 1970 .
[4] Jeffrey B. Remmel,et al. Multiplying Schur functions , 1984, J. Algorithms.
[5] de Ng Dick Bruijn,et al. On the set of divisors of a number , 1951 .
[6] Mark D. Haiman. On mixed insertion, symmetry, and shifted young tableaux , 1989, J. Comb. Theory, Ser. A.
[7] G. de B. Robinson,et al. On the Representations of the Symmetric Group , 1938 .
[8] Marcel P. Schützenberger. Quelques remarques sur une Construction de Schensted. , 1963 .
[9] Mark D. Haiman,et al. Dual equivalence with applications, including a conjecture of Proctor , 1992, Discret. Math..
[10] Glânffrwd P Thomas. On Schensted's construction and the multiplication of schur functions , 1978 .
[11] Curtis Greene,et al. An Extension of Schensted's Theorem , 1974 .
[12] Peter Littelmann,et al. Paths and root operators in representation theory , 1995 .
[13] Marc A. A. van Leeuwen. Tableau algorithms defined naturally for pictures , 1996, Discret. Math..
[14] C. Schensted. Longest Increasing and Decreasing Subsequences , 1961, Canadian Journal of Mathematics.
[15] D. E. Littlewood,et al. Group Characters and Algebra , 1934 .
[16] Marcel Paul Schützenberger,et al. Promotion des morphismes d'ensembles ordonnes , 1972, Discret. Math..
[17] Sergey Fomin,et al. A Littlewood-Richardson Miscellany , 1993, Eur. J. Comb..
[18] Edward A. Bender,et al. Enumeration of Plane Partitions , 1972, J. Comb. Theory A.
[19] A. Zelevinsky,et al. A generalization of the Littlewood-Richardson rule and the Robinson-Schensted-Knuth correspondence , 1981 .
[20] Frank Sottile,et al. Tableau Switching: Algorithms and Applications , 1996, J. Comb. Theory, Ser. A.
[21] An analogue of Jeu de taquin for Littelmann's crystal paths. , 1998 .
[22] Alfred Young. On Quantitative Substitutional Analysis , 1930 .
[23] Daniel J. Kleitman,et al. Strong Versions of Sperner's Theorem , 1976, J. Comb. Theory, Ser. A.
[24] Masaki Kashiwara,et al. Crystal Graphs for Representations of the q-Analogue of Classical Lie Algebras , 1994 .
[25] Andrei Zelevinsky,et al. Triple Multiplicities for sl(r + 1) and the Spectrum of the Exterior Algebra of the Adjoint Representation , 1992 .
[26] A. Morris. REPRESENTATIONS OF FINITE CLASSICAL GROUPS: A Hopf Algebra Approach (Lecture Notes in Mathematics, 869) , 1982 .
[27] Vesselin Gasharov. A Short Proof of the Littlewood-Richardson Rule , 1998, Eur. J. Comb..
[28] Glânffrwd P. Thomas,et al. On a construction of schützenberger , 1977, Discret. Math..
[29] I. G. MacDonald,et al. Symmetric functions and Hall polynomials , 1979 .
[30] A. V. Zelevinsky,et al. Representations of Finite Classical Groups: A Hopf Algebra Approach , 1981 .
[31] Marc van Leeuwen,et al. The Robinson-Schensted and Schützenberger algorithms, an elementary approach , 1995, Electron. J. Comb..
[32] Marcel Paul Schützenberger,et al. La correspondance de Robinson , 1977 .
[33] J. Thibon,et al. The Robinson-Schensted correspondence, crystal bases, and the quantum straightening at q = 0 , 1995 .
[34] Peter Littelmann,et al. A Littlewood-Richardson rule for symmetrizable Kac-Moody algebras , 1994 .