Entanglement-assisted quantum error correction codes with length \(n=q^2+1\)

In this paper, by investigating \(q^2\)-cyclotomic coset modulo rn in detail, where q is a prime power, \(n=q^2+1\) and \(r\mid (q+1)\), series of entanglement-assisted quantum error correction (EAQEC) codes with flexible parameters of length n are constructed from constacyclic codes (including cyclic codes). Most of our EAQEC codes are new and have large minimum distance. As to EAQEC codes constructed from cyclic codes, their all possible parameters are determined completely. When minimum distance \(d\le \frac{n+2}{2}\), all of our constructed EAQEC codes are entanglement-assisted quantum MDS (EAQMDS) codes. Those previously known EAQMDS codes with the same length in Fan et al. (Quantum Inf Comput 16:423–434, 2016), Chen et al. (Quantum Inf Process 16(303):1–22, 2017), Lu et al. (Finite Fields Their Appl 53:309–325, 2018), Mustafa and Emre (Comput Appl Math 38(75):1–13, 2019) and Qian and Zhang (Quantum Inf Process 18(71):1–12, 2019) are special cases of ours. Besides, some maximum entanglement EAQEC codes and maximum entanglement EAQMDS codes are derived as well.

[1]  Pradeep Kiran Sarvepalli,et al.  On Quantum and Classical BCH Codes , 2006, IEEE Transactions on Information Theory.

[2]  Yang Liu,et al.  Application of constacyclic codes to entanglement-assisted quantum maximum distance separable codes , 2018, Quantum Inf. Process..

[3]  Lina Zhang,et al.  Constructions of new entanglement-assisted quantum MDS and almost MDS codes , 2019, Quantum Inf. Process..

[4]  Ruihu Li,et al.  Entanglement-assisted quantum codes constructed from primitive quaternary BCH codes , 2014 .

[5]  Yang Liu,et al.  Two families of BCH codes and new quantum codes , 2018, Quantum Inf. Process..

[6]  T. Beth,et al.  Quantum BCH Codes , 1999, quant-ph/9910060.

[7]  Yonghong Chen,et al.  Cryptanalysis and improvement of a quantum private set intersection protocol , 2017, Quantum Inf. Process..

[8]  Alexei E. Ashikhmin,et al.  Nonbinary quantum stabilizer codes , 2001, IEEE Trans. Inf. Theory.

[9]  Martin Rötteler,et al.  Quantum MDS codes over small fields , 2015, 2015 IEEE International Symposium on Information Theory (ISIT).

[10]  Dwijendra K. Ray-Chaudhuri,et al.  The Structure of 1-Generator Quasi-Twisted Codes and New Linear Codes , 2001, Des. Codes Cryptogr..

[11]  Shixin Zhu,et al.  New Quantum MDS Codes From Negacyclic Codes , 2013, IEEE Transactions on Information Theory.

[12]  Mustafa Sarı,et al.  An application of constacyclic codes to entanglement-assisted quantum MDS codes , 2019, Comput. Appl. Math..

[13]  Santosh Kumar,et al.  Nonbinary Stabilizer Codes Over Finite Fields , 2005, IEEE Transactions on Information Theory.

[14]  Yang Liu,et al.  Entanglement-assisted quantum MDS codes from constacyclic codes with large minimum distance , 2018, Finite Fields Their Appl..

[15]  N. J. A. Sloane,et al.  Quantum Error Correction Via Codes Over GF(4) , 1998, IEEE Trans. Inf. Theory.

[16]  Xueliang Li,et al.  Binary Construction of Quantum Codes of Minimum Distance Three and Four , 2004, IEEE Trans. Inf. Theory.

[17]  T. Brun,et al.  Optimal entanglement formulas for entanglement-assisted quantum coding , 2008, 0804.1404.

[18]  Hongwei Li A quantum algorithm for testing and learning resiliency of a Boolean function , 2019, Quantum Inf. Process..

[19]  Giuliano G. La Guardia,et al.  New Quantum MDS Codes , 2011, IEEE Transactions on Information Theory.

[20]  Lanqiang Li,et al.  Euclidean and Hermitian Hulls of MDS Codes and Their Applications to EAQECCs , 2018, IEEE Transactions on Information Theory.

[21]  Hanwu Chen,et al.  Constructions of q-ary entanglement-assisted quantum MDS codes with minimum distance greater than q+1 , 2016, Quantum Inf. Comput..

[22]  Lingfei Jin Quantum Stabilizer Codes From Maximal Curves , 2014, IEEE Transactions on Information Theory.

[23]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .

[24]  Chaoping Xing,et al.  A Construction of New Quantum MDS Codes , 2013, IEEE Transactions on Information Theory.

[25]  Jian Gao,et al.  Constacyclic codes over the ring $${\mathbb {F}}_q+v{\mathbb {F}}_q+v^{2}{\mathbb {F}}_q$$Fq+vFq+v2Fq and their applications of constructing new non-binary quantum codes , 2018, Quantum Inf. Process..

[26]  W. Cary Huffman,et al.  Fundamentals of Error-Correcting Codes , 1975 .

[27]  Yang Liu,et al.  A class of constacyclic BCH codes and new quantum codes , 2017, Quantum Inf. Process..

[28]  Dafa Li,et al.  SLOCC classification of n qubits invoking the proportional relationships for spectrums and standard Jordan normal forms , 2017, Quantum Inf. Process..

[29]  Weidong Zhao,et al.  Local fractional Laplace homotopy analysis method for solving non-differentiable wave equations on Cantor sets , 2019, Comput. Appl. Math..

[30]  Chaoping Xing,et al.  Application of Classical Hermitian Self-Orthogonal MDS Codes to Quantum MDS Codes , 2010, IEEE Transactions on Information Theory.

[31]  Yang Liu,et al.  Hermitian dual containing BCH codes and construction of new quantum codes , 2013, Quantum Inf. Comput..

[32]  Dilip V. Sarwate,et al.  Pseudocyclic maximum- distance-separable codes , 1990, IEEE Trans. Inf. Theory.

[33]  Yang Liu,et al.  New quantum constacyclic codes , 2019, Quantum Inf. Process..

[34]  Riqing Chen,et al.  Entanglement-assisted quantum MDS codes constructed from negacyclic codes , 2017, Quantum Information Processing.

[35]  Igor Devetak,et al.  Correcting Quantum Errors with Entanglement , 2006, Science.

[36]  Yang Liu,et al.  New constructions of entanglement-assisted quantum MDS codes from negacyclic codes , 2019, International Journal of Quantum Information.

[37]  Lina Zhang,et al.  On MDS linear complementary dual codes and entanglement-assisted quantum codes , 2018, Des. Codes Cryptogr..