Optimum design of planar steel frames using the Search Group Algorithm

This paper presents a design procedure employing the Search Group Algorithm (SGA) for discrete optimization of planar steel frames. SGA is a global optimization heuristic algorithm that has been developed recently. It is based on search groups that explore the design space in a global phase and exploit the best domain regions found in a local phase. The algorithm is used in a structural optimization problem to obtain minimum weight frames subjected to strength and displacement requirements imposed by the American Institute for Steel Construction (AISC) Load and Resistance Factor Design. Designs are obtained by selecting appropriate W-shaped sections from a standard set of steel sections specified by the AISC. Three frame examples from the literature are examined to verify the effectiveness and robustness of the SGA for this type of problem. The results of the SGA are compared to those of state of art algorithms showing that SGA is a competitive meta-heuristic search procedure for engineering design applications.

[1]  N. Venkaiah,et al.  A modified cuckoo search algorithm to optimize Wire-EDM process while machining Inconel-690 , 2017 .

[2]  Moacir Kripka,et al.  "Big Crunch" Optimization Method , 2008 .

[3]  A Kaveh,et al.  OPTIMUM DESIGN OF STEEL SWAY FRAMES USING BIG BANGBIG CRUNCH ALGORITHM , 2011 .

[4]  S. Talatahari,et al.  OPTIMIZATION OF SKELETAL STRUCTURAL USING ARTIFICIAL BEE COLONY ALGORITHM , 2012 .

[5]  Siamak Talatahari,et al.  A DISCRETE PARTICLE SWARM ANT COLONY OPTIMIZATION FOR DESIGN OF STEEL FRAMES , 2008 .

[6]  Ali Kaveh,et al.  Imperialist Competitive Algorithm , 2014 .

[7]  Leandro Fleck Fadel Miguel,et al.  Search group algorithm , 2015 .

[8]  S. O. Degertekin,et al.  Minimum cost design of steel frames with semi-rigid connections and column bases via genetic optimization , 2005 .

[9]  M. P. Saka,et al.  Adaptive Harmony Search Method for Structural Optimization , 2010 .

[10]  S. O. Degertekin,et al.  Optimal load and resistance factor design of geometrically nonlinear steel space frames via tabu search and genetic algorithm , 2008 .

[11]  Siamak Talatahari,et al.  An improved ant colony optimization for the design of planar steel frames , 2010 .

[12]  O. Hasançebi,et al.  Reformulations of Big Bang-Big Crunch Algorithm for Discrete Structural Design Optimization , 2013 .

[13]  A. Kaveh,et al.  Comparison of nine meta-heuristic algorithms for optimal design of truss structures with frequency constraints , 2014, Adv. Eng. Softw..

[14]  A. Kaveh,et al.  Performance-based seismic design of steel frames utilizing charged system search optimization , 2014, Appl. Soft Comput..

[15]  Caro Lucas,et al.  Imperialist competitive algorithm: An algorithm for optimization inspired by imperialistic competition , 2007, 2007 IEEE Congress on Evolutionary Computation.

[16]  Kapil Khandelwal,et al.  Comparison of robustness of metaheuristic algorithms for steel frame optimization , 2015 .

[17]  Maged Dessouky,et al.  Structural Weight Optimization of Frames Using Tabu Search. I: Optimization Procedure , 2006 .

[18]  A. Kaveh,et al.  Charged system search for optimal design of frame structures , 2012, Appl. Soft Comput..

[19]  Antônio José da Silva Neto,et al.  A comparative study of the application of differential evolution and simulated annealing in radiative transfer problems , 2010 .

[20]  Mahmoud R. Maheri,et al.  An enhanced harmony search algorithm for optimum design of side sway steel frames , 2014 .

[21]  S. O. Degertekin Optimum design of steel frames using harmony search algorithm , 2008 .

[22]  P. F. Adams,et al.  Stability of Braced and Unbraced Frames , 1974 .

[23]  S. Rajeev,et al.  Discrete Optimization of Structures Using Genetic Algorithms , 1992 .

[24]  Mehmet Polat Saka,et al.  Optimum design of unbraced steel frames to LRFD-AISC using particle swarm optimization , 2012, Adv. Eng. Softw..

[25]  S. O. Degertekin A comparison of simulated annealing and genetic algorithm for optimum design of nonlinear steel space frames , 2007 .

[26]  Mehmet Polat Saka,et al.  Ant colony optimization of irregular steel frames including elemental warping effect , 2012, Adv. Eng. Softw..

[27]  Mehmet Polat Saka,et al.  Design optimization of real world steel space frames using artificial bee colony algorithm with Levy flight distribution , 2016, Adv. Eng. Softw..

[28]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[29]  Carlos A. Coello Coello,et al.  Constraint-handling in nature-inspired numerical optimization: Past, present and future , 2011, Swarm Evol. Comput..

[30]  Donald E. Grierson,et al.  Least‐Weight Design of Steel Frameworks Accounting for P‐Δ Effects , 1989 .

[31]  Rafael Holdorf Lopez,et al.  A local-restart coupled strategy for simultaneous sizing and geometry truss optimization , 2011 .

[32]  Richard J. Balling,et al.  Optimal Steel Frame Design by Simulated Annealing , 1991 .

[33]  P. F. Adams,et al.  Column Design by P Delta Method , 1976 .

[34]  Patrick Murren,et al.  Design-driven harmony search (DDHS) in steel frame optimization , 2014 .

[35]  Zong Woo Geem,et al.  Mathematical and Metaheuristic Applications in Design Optimization of Steel Frame Structures: An Extensive Review , 2013 .

[36]  M. P. Saka,et al.  Recent Developments in Metaheuristic Algorithms: A Review , 2012 .

[37]  Shahram Pezeshk,et al.  Design of Nonlinear Framed Structures Using Genetic Optimization , 2000 .

[38]  O. Hasançebi,et al.  An exponential big bang-big crunch algorithm for discrete design optimization of steel frames , 2012 .

[39]  Vedat Toğan,et al.  Design of planar steel frames using Teaching–Learning Based Optimization , 2012 .

[40]  Barron J. Bichon,et al.  Design of Steel Frames Using Ant Colony Optimization , 2005 .

[41]  Siamak Talatahari,et al.  Optimum design of skeletal structures using imperialist competitive algorithm , 2010 .