Neighboring-extremal updates for nonlinear model-predictive control and dynamic real-time optimization

Abstract Nonlinear model-predictive control (NMPC) and dynamic real-time optimization (DRTO) lead to a substantial improvement of the operation of complex nonlinear processes. Whereas the focus in NMPC is primarily on control performance by minimizing the deviation from a given set-point, the objective in DRTO is to achieve a profitable and flexible operation adapted to changing market conditions and process uncertainties by employing an economic optimization criterion. A method for solving dynamic optimization problems based on neighboring-extremal updates suitable for applications in NMPC and DRTO is presented in this paper. If process operation is affected by small perturbations, efficient techniques for updating the nominal trajectories based on parametric sensitivities can be applied [J. Kadam, W. Marquardt, Sensitivity-based solution updates in closed-loop dynamic optimization, in: Proceedings of the DYCOPS 7 Conference, Cambridge, USA, 2004]; these updates do not require the solution of the rigorous optimization problem but rely on first and second-order sensitivities computed by composite adjoints. However for larger perturbations and strong nonlinearities, the fast updates obtained by the neighboring-extremal solutions are not sufficiently accurate, and the solution of the nonlinear optimization problem requires further iterations with updated sensitivities to give a feasible and optimal solution. The application of the method to a simulated semi-batch reactor demonstrates its capabilities. The presented method is discussed in comparison to other methods in the literature.

[1]  W. C. Li,et al.  Newton-type control strategies for constrained nonlinear processes , 1989 .

[2]  Sebastian Engell Feedback control for optimal process operation , 2007 .

[3]  Victor M. Zavala,et al.  The advanced-step NMPC controller: Optimality, stability and robustness , 2009, Autom..

[4]  H. J. Pesch Real‐time computation of feedback controls for constrained optimal control problems. part 1: Neighbouring extremals , 1989 .

[5]  Sebastian Engell,et al.  Optimisation and control of chromatography , 2005, Comput. Chem. Eng..

[6]  Wolfgang Marquardt,et al.  Fast computation of the Hessian of the Lagrangian in shooting algorithms for dynamic optimization , 2007 .

[7]  Hans Bock,et al.  Fast Nonlinear Model Predictive Control with an Application in Automotive Engineering , 2009 .

[8]  Stephen P. Boyd,et al.  Fast Model Predictive Control Using Online Optimization , 2010, IEEE Transactions on Control Systems Technology.

[9]  Victor M. Zavala,et al.  Fast implementations and rigorous models: Can both be accommodated in NMPC? , 2008 .

[10]  V. Vassiliadis,et al.  Second-order sensitivities of general dynamic systems with application to optimal control problems , 1999 .

[11]  Frank Allgöwer,et al.  Computational Delay in Nonlinear Model Predictive Control , 2004 .

[12]  Dominique Bonvin,et al.  Neighbouring-extremal control for singular dynamic optimisation problems. Part I: single-input systems , 2009, Int. J. Control.

[13]  Alberto Bemporad,et al.  The explicit linear quadratic regulator for constrained systems , 2003, Autom..

[14]  R. Fletcher,et al.  A New Approach to Variable Metric Algorithms , 1970, Comput. J..

[15]  A. Walther,et al.  Parametric sensitivities for optimal control problems using automatic differentiation , 2003 .

[16]  MORITZ DIEHL,et al.  A Real-Time Iteration Scheme for Nonlinear Optimization in Optimal Feedback Control , 2005, SIAM J. Control. Optim..

[17]  Wolfgang Marquardt,et al.  Structural Concepts for Optimization Based Control of Transient Processes , 2000 .

[18]  Wolfgang Marquardt,et al.  Dynamic optimization using adaptive control vector parameterization , 2005, Comput. Chem. Eng..

[19]  Stephen J. Wright,et al.  Fast, large-scale model predictive control by partial enumeration , 2007, Autom..

[20]  Wolfgang Marquardt,et al.  Sensitivity-Based Solution Updates in Closed-Loop Dynamic Optimization , 2004 .

[21]  L. Biegler,et al.  A reduced hessian strategy for sensitivity analysis of optimal flowsheets , 1987 .

[22]  Andreas Griewank,et al.  Algorithm 799: revolve: an implementation of checkpointing for the reverse or adjoint mode of computational differentiation , 2000, TOMS.

[23]  S. Joe Qin,et al.  An Overview of Nonlinear Model Predictive Control Applications , 2000 .

[24]  Stephen J. Wright,et al.  Nonlinear Model Predictive Control via Feasibility-Perturbed Sequential Quadratic Programming , 2004, Comput. Optim. Appl..

[25]  Wolfgang Marquardt,et al.  Continuous and Discrete Composite Adjoints for the Hessian of the Lagrangian in Shooting Algorithms for Dynamic Optimization , 2009, SIAM J. Sci. Comput..

[26]  W. Marquardt,et al.  Sensitivity analysis of linearly-implicit differential-algebraic systems by one-step extrapolation , 2004 .

[27]  Lorenz T. Biegler,et al.  An extension of Newton-type algorithms for nonlinear process control , 1995, Autom..

[28]  Arthur E. Bryson,et al.  Applied Optimal Control , 1969 .

[29]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[30]  Bernd-Markus Pfeiffer,et al.  Modellbasierte prädiktive Regelung in der industriellen Praxis (Industrial Application of Model Predictive Control) , 2006, Autom..

[31]  G. Gattu,et al.  Nonlinear Quadratic Dynamic Matrix Control with State Estimation , 1992 .

[32]  M. Chanda,et al.  Gel-coated ion-exchange resin : A new kinetic model , 1999 .

[33]  M. Morari,et al.  On-line optimization via off-line parametric optimization tools , 2000 .

[34]  D. Q. Mayne,et al.  Suboptimal model predictive control (feasibility implies stability) , 1999, IEEE Trans. Autom. Control..

[35]  Sebastian Engell,et al.  Optimization-based state estimation — A comparative study for the batch polycondensation of polyethyleneterephthalate , 2001, 2001 European Control Conference (ECC).

[36]  Martin Schlegel,et al.  Optimization and Control of Polymerization Processes , 2005 .

[37]  Fraser J Forbes,et al.  Model Structure and Adjustable Parameter Selection for Operations Optimization , 1994 .

[38]  Derya B. Özyurt,et al.  Cheap Second Order Directional Derivatives of Stiff ODE Embedded Functionals , 2005, SIAM J. Sci. Comput..

[39]  M. Diehl,et al.  Fast reduced multiple shooting methods for nonlinear model predictive control , 2007 .

[40]  Martin Grötschel,et al.  Online optimization of large scale systems , 2001 .

[41]  William W. Hager,et al.  Runge-Kutta methods in optimal control and the transformed adjoint system , 2000, Numerische Mathematik.

[42]  Michael A. Saunders,et al.  SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization , 2005, SIAM Rev..

[43]  Christof Büskens,et al.  Sensitivity Analysis and Real-Time Control of Parametric Optimal Control Problems Using Nonlinear Programming Methods , 2001 .

[44]  M. Diehl,et al.  Real-time optimization and nonlinear model predictive control of processes governed by differential-algebraic equations , 2000 .