Power-composition profile driven co-synthesis with power management selection for dynamic and leakage energy reduction

Recent research has shown that the combination of dynamic voltage scaling (DVS) and adaptive body biasing (ABB) yields high energy reductions in embedded systems. Nevertheless, the implementation of DVS and ABB requires a significant system cost, making it less attractive for many small systems. In this paper we demonstrate that it is possible to reduce this system cost and to achieve comparable energy saving to that obtained using combined DVS and ABB scheme through a co-synthesis methodology which is aware of the tasks' power-composition profile (the ratio of the dynamic power to the leakage power). In particular, the presented methodology performs a power management selection at the architectural level, i. e., it decides upon which processing elements to be equipped with which power management scheme (DVS, ABB, or combined DVS and ABB) - with the aim to achieve high energy savings at a reduced implementation cost. The proposed technique maps, schedules, and voltage scales applications specified as task graphs with timing constraints. Detailed experiments including a real-life benchmark are conducted to demonstrate the effectiveness of the proposed methodology.

[1]  Niraj K. Jha,et al.  MOGAC: a multiobjective genetic algorithm for hardware-software cosynthesis of distributed embedded systems , 1998, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[2]  Kaushik Roy,et al.  Dynamic VTH Scaling Scheme for Active Leakage Power Reduction , 2002, DATE.

[3]  Petru Eles,et al.  Scheduling with bus access optimization for distributed embedded systems , 2000, IEEE Trans. Very Large Scale Integr. Syst..

[4]  Thomas D. Burd,et al.  Energy efficient microprocessor design , 2001 .

[5]  Kaushik Roy,et al.  Dynamic V/sub TH/ scaling scheme for active leakage power reduction , 2002, Proceedings 2002 Design, Automation and Test in Europe Conference and Exhibition.

[6]  Bashir M. Al-Hashimi,et al.  Considering power variations of DVS processing elements for energy minimisation in distributed systems , 2001, International Symposium on System Synthesis (IEEE Cat. No.01EX526).

[7]  T. Fujita,et al.  A 0.9 V 150 MHz 10 mW 4 mm/sup 2/ 2-D discrete cosine transform core processor with variable-threshold-voltage scheme , 1996, 1996 IEEE International Solid-State Circuits Conference. Digest of TEchnical Papers, ISSCC.

[8]  Petru Eles,et al.  System-Level Design Techniques for Energy-Efficient Embedded Systems , 2003, Springer US.

[9]  G. Ono,et al.  A 1000-MIPS/W microprocessor using speed adaptive threshold-voltage CMOS with forward bias , 2000, 2000 IEEE International Solid-State Circuits Conference. Digest of Technical Papers (Cat. No.00CH37056).

[10]  Niraj K. Jha,et al.  Combined Dynamic Voltage Scaling and Adaptive Body Biasing for Heterogeneous Distributed Real-time Embedded Systems , 2003, ICCAD 2003.

[11]  藤田 哲也,et al.  A 0.9V 150MHz 10mW 4mm^2 2-D Discrete Cosine Transform Core Processor with Variable Threshold-Voltage (VT) Scheme , 1996 .

[12]  A.P. Chandrakasan,et al.  A 175 mV multiply-accumulate unit using an adaptive supply voltage and body bias (ASB) architecture , 2002, 2002 IEEE International Solid-State Circuits Conference. Digest of Technical Papers (Cat. No.02CH37315).

[13]  Trevor Mudge,et al.  Combined dynamic voltage scaling and adaptive body biasing for lower power microprocessors under dynamic workloads , 2002, ICCAD 2002.

[14]  Shekhar Y. Borkar,et al.  Design challenges of technology scaling , 1999, IEEE Micro.

[15]  Hiroto Yasuura,et al.  Voltage scheduling problem for dynamically variable voltage processors , 1998, Proceedings. 1998 International Symposium on Low Power Electronics and Design (IEEE Cat. No.98TH8379).

[16]  Narayanan Vijaykrishnan,et al.  Impact of scaling on the effectiveness of dynamic power reduction schemes , 2002, Proceedings. IEEE International Conference on Computer Design: VLSI in Computers and Processors.

[17]  Narayanan Vijaykrishnan,et al.  Evaluating run-time techniques for leakage power reduction , 2002, Proceedings of ASP-DAC/VLSI Design 2002. 7th Asia and South Pacific Design Automation Conference and 15h International Conference on VLSI Design.

[18]  Petru Eles,et al.  Overhead-conscious voltage selection for dynamic and leakage energy reduction of time-constrained systems , 2004, Proceedings Design, Automation and Test in Europe Conference and Exhibition.

[19]  Sharad Malik,et al.  Power analysis of embedded software: a first step towards software power minimization , 1994, IEEE Trans. Very Large Scale Integr. Syst..