Optical thickness of tropical cirrus clouds derived from the MODIS 0.66and 1.375-/spl mu/m channels

In this paper, we introduce a method to retrieve the optical thickness of tropical cirrus clouds using the isolated visible cirrus reflectance (without atmospheric and surface effects). The isolated cirrus reflectance is inferred from level 1b calibrated 0.66- and 1.375-/spl mu/m Moderate Resolution Imaging Spectroradiometer (MODIS) data. We created an optical properties database and optical thickness lookup library using previously calculated single-scattering data in conjunction with the discrete ordinates radiative transfer (DISORT) code. An algorithm was constructed based on this lookup library to infer the optical thickness of tropical cirrus clouds for each pixel in a MODIS image. We demonstrate the applicability of this algorithm using several independent MODIS images from the Terra satellite. The present method is complimentary to the MODIS operational cloud retrieval algorithm for the case of cirrus clouds.

[1]  L. Pfister,et al.  Dehydration of the upper troposphere and lower stratosphere by subvisible cirrus clouds near the tropical tropopause , 1996 .

[2]  H. Chepfer,et al.  Cirrus Cloud Properties Derived from POLDER-1/ADEOS Polarized Radiances: First Validation Using a Ground-Based Lidar Network , 2000 .

[3]  Greg Michael McFarquhar Comments on ‘Parametrization of effective sizes of cirrus‐cloud particles and its verification against observations’ by Zhian Sun and Lawrie Rikus. October B, 1999, 125, 3037–3055 , 2001 .

[4]  G. Rybicki Radiative transfer , 2019, Climate Change and Terrestrial Ecosystem Modeling.

[5]  Bryan A. Baum,et al.  Remote sensing of cloud properties using MODIS airborne simulator imagery during SUCCESS: 1. Data and models , 2000 .

[6]  W. Paul Menzel,et al.  The MODIS cloud products: algorithms and examples from Terra , 2003, IEEE Trans. Geosci. Remote. Sens..

[7]  K. Stamnes,et al.  Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. , 1988, Applied optics.

[8]  Q. Fu An Accurate Parameterization of the Infrared Radiative Properties of Cirrus Clouds for Climate Models , 1996 .

[9]  M. King,et al.  Determination of the optical thickness and effective particle radius of clouds from reflected solar , 1990 .

[10]  Michael Jensen,et al.  Characteristics of the atmospheric state and the surface radiation budget at the tropical western Pacific ARM Site , 1998 .

[11]  Ping Yang,et al.  An algorithm using visible and 1.38-μm channels to retrieve cirrus cloud reflectances from aircraft and satellite data , 2002, IEEE Trans. Geosci. Remote. Sens..

[12]  Gary G. Gibson,et al.  δ-Fit: A fast and accurate treatment of particle scattering phase functions with weighted singular-value decomposition least-squares fitting , 2000 .

[13]  A. Macke,et al.  Single Scattering Properties of Atmospheric Ice Crystals , 1996 .

[14]  K. Liou,et al.  Single-scattering properties of complex ice crystals in terrestrial atmosphere , 1998 .

[15]  Dennis L. Hartmann,et al.  An important constraint on tropical cloud ‐ climate feedback , 2002 .

[16]  Y. Kaufman,et al.  Corection of thin cirrus path radiances in the 0.4–1.0 μm spectral region using the sensitive 1.375 μm cirrus detecting channel , 1998 .

[17]  Peter N. Francis,et al.  An observational and theoretical study of the radiative properties of cirrus: Some results from ICE'89 , 1994 .

[18]  S. Warren,et al.  Optical constants of ice from the ultraviolet to the microwave. , 1984, Applied optics.

[19]  Greg Michael McFarquhar,et al.  Microphysical Characteristics of Three Anvils Sampled during the Central Equatorial Pacific Experiment , 1996 .

[20]  Q. Fu,et al.  The heat balance of the tropical tropopause, cirrus, and stratospheric dehydration , 2001 .

[21]  J. Foot,et al.  Some observations of the optical properties of clouds. II: Cirrus , 1988 .

[22]  Bryan A. Baum,et al.  Remote sensing of cloud properties using MODIS airborne simulator imagery during SUCCESS: 3. Cloud Overlap , 2000 .

[23]  Ping Yang,et al.  The Distribution of Tropical Thin Cirrus Clouds Inferred from Terra MODIS Data , 2003 .

[24]  Bryan A. Baum,et al.  The Development of Midlatitude Cirrus Models for MODIS Using FIRE-I, FIRE-II, and ARM In Situ Data , 2002 .

[25]  W. Menzel,et al.  Four Years of Global Cirrus Cloud Statistics Using HIRS, Revised , 1994 .

[26]  W. Paul Menzel,et al.  Cloud and aerosol properties, precipitable water, and profiles of temperature and water vapor from MODIS , 2003, IEEE Trans. Geosci. Remote. Sens..

[27]  M. McCormick,et al.  A 6‐year climatology of cloud occurrence frequency from Stratospheric Aerosol and Gas Experiment II observations (1985–1990) , 1996 .

[28]  G. S. Kent,et al.  Tropical high cloud characteristics derived from SAGE II extinction measurements , 1994 .

[29]  W. Wiscombe The Delta–M Method: Rapid Yet Accurate Radiative Flux Calculations for Strongly Asymmetric Phase Functions , 1977 .

[30]  H. Chepfer,et al.  Cirrus clouds’ microphysical properties deduced from POLDER observations , 1998 .

[31]  G. McFarquhar,et al.  A New Parameterization of Single Scattering Solar Radiative Properties for Tropical Anvils Using Observed Ice Crystal Size and Shape Distributions , 2002 .

[32]  D. Winker,et al.  Laminar cirrus observed near the tropical tropopause by LITE , 1998 .

[33]  C. Prabhakara,et al.  Optically thin cirrus clouds - Radiative impact on the warm pool , 1993 .

[34]  W. Paul Menzel,et al.  Remote sensing of cloud properties using MODIS airborne simulator imagery during SUCCESS: 2. Cloud thermodynamic phase , 2000 .

[35]  K. Liou,et al.  Parameterization of the scattering and absorption properties of individual ice crystals , 2000 .

[36]  Kenneth Sassen,et al.  Subvisual-Thin Cirrus Lidar Dataset for Satellite Verification and Climatological Research , 1992 .

[37]  W. Rossow,et al.  ISCCP Cloud Data Products , 1991 .

[38]  W. Paul Menzel,et al.  Remote sensing of cloud, aerosol, and water vapor properties from the moderate resolution imaging spectrometer (MODIS) , 1992, IEEE Trans. Geosci. Remote. Sens..