Flows in One-Crossing-Minor-Free Graphs

We study the maximum flow problem in directed H-minor-free graphs where H can be drawn in the plane with one crossing. If a structural decomposition of the graph as a clique-sum of planar graphs and graphs of constant complexity is given, we show that a maximum flow can be computed in O(nlogn) time. In particular, maximum flows in directed K 3,3-minor-free graphs and directed K 5-minor-free graphs can be computed in O(nlogn) time without additional assumptions.

[1]  Refael Hassin,et al.  An O(n log2 n) Algorithm for Maximum Flow in Undirected Planar Networks , 1985, SIAM J. Comput..

[2]  Paul D. Seymour,et al.  Excluding a graph with one crossing , 1991, Graph Structure Theory.

[3]  David Eppstein,et al.  Separator based sparsification for dynamic planar graph algorithms , 1993, STOC '93.

[4]  Paul D. Seymour,et al.  Graph Minors. XX. Wagner's conjecture , 2004, J. Comb. Theory B.

[5]  André E. Kézdy,et al.  Sequential and parallel algorithms to find a K5 minor , 1992, SODA '92.

[6]  Naomi Nishimura,et al.  Characterizing Multiterminal Flow Networks and Computing Flows in Networks of Small Treewidth , 1998, J. Comput. Syst. Sci..

[7]  Takao Asano,et al.  An Approach to the Subgraph Homeomorphism Problem , 1985, Theor. Comput. Sci..

[8]  Jean-Pierre Bourguignon,et al.  Mathematische Annalen , 1893 .

[9]  James B. Orlin,et al.  A faster strongly polynomial minimum cost flow algorithm , 1993, STOC '88.

[10]  Philip N. Klein,et al.  Multiple-Source Multiple-Sink Maximum Flow in Directed Planar Graphs in Near-Linear Time , 2011, FOCS.

[11]  Erik D. Demaine,et al.  -Approximation for Treewidth of Graphs Excluding a Graph with One Crossing as a Minor , 2002, APPROX.

[12]  K. Weihe Maximum (s,t)-Flows in Planar Networks in O( , 1997 .

[13]  Robin Thomas,et al.  A separator theorem for graphs with an excluded minor and its applications , 1990, STOC '90.

[14]  D. Gale A theorem on flows in networks , 1957 .

[15]  Ken-ichi Kawarabayashi,et al.  Algorithmic graph minor theory: Decomposition, approximation, and coloring , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).

[16]  Erin W. Chambers,et al.  Homology flows, cohomology cuts , 2009, STOC '09.

[17]  Andrew V. Goldberg,et al.  A new approach to the maximum flow problem , 1986, STOC '86.

[18]  Karsten Weihe Maximum (s,t)-flows in planar networks in O(|V|log|V|) time , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[19]  Paul D. Seymour,et al.  Graph Minors: XV. Giant Steps , 1996, J. Comb. Theory, Ser. B.

[20]  Refael Hassin,et al.  Maximum Flow in (s, t) Planar Networks , 1981, Inf. Process. Lett..

[21]  D. W. Hall A note on primitive skew curves , 1943 .

[22]  Andrew V. Goldberg,et al.  Beyond the flow decomposition barrier , 1998, JACM.

[23]  B. Reed,et al.  Fast separation in a graph with an excluded minor , 2004 .

[24]  S. Lane A structural characterization of planar combinatorial graphs , 1937 .

[25]  David Eppstein Diameter and Treewidth in Minor-Closed Graph Families , 2000, Algorithmica.

[26]  Matthias Müller-Hannemann,et al.  Shortest paths in linear time on minor-closed graph classes, with an application to Steiner tree approximation , 2009, Discret. Appl. Math..

[27]  Paul D. Seymour,et al.  Graph Minors. XVI. Excluding a non-planar graph , 2003, J. Comb. Theory, Ser. B.

[28]  Bruce A. Reed,et al.  Optimization and Recognition for K 5-minor Free Graphs in Linear Time , 2008, LATIN.

[29]  Alon Itai,et al.  Maximum Flow in Planar Networks , 1979, SIAM J. Comput..

[30]  D. R. Fulkerson,et al.  Maximal Flow Through a Network , 1956 .

[31]  Erin W. Chambers,et al.  Minimum cuts and shortest homologous cycles , 2009, SCG '09.

[32]  Piotr Sankowski,et al.  Improved algorithms for min cut and max flow in undirected planar graphs , 2011, STOC '11.

[33]  Samuel I. Daitch,et al.  Faster Lossy Generalized Flow via Interior Point Algorithms , 2008 .

[34]  Samir Khuller,et al.  Flow in planar graphs with vertex capacities , 1990, Algorithmica.

[35]  Andre E. Kezdy,et al.  Sequential and parallel algorithms to find a K 5 minor , 1992, SODA 1992.

[36]  David Eppstein,et al.  Steinitz theorems for orthogonal polyhedra , 2009, J. Comput. Geom..

[37]  Samir Khuller,et al.  The Lattice Structure of Flow in Planar Graphs , 1993, SIAM J. Discret. Math..

[38]  Paul D. Seymour,et al.  Graph minors. V. Excluding a planar graph , 1986, J. Comb. Theory B.

[39]  Karsten Weihe,et al.  Maximum s-t-flow with k crossings in O(k3n log n) time , 2007, SODA '07.

[40]  Roberto Tamassia,et al.  Incremental planarity testing , 1989, 30th Annual Symposium on Foundations of Computer Science.

[41]  Christos D. Zaroliagis,et al.  Computing Mimicking Networks , 1998, Algorithmica.

[42]  Gary L. Miller,et al.  Flow in Planar Graphs with Multiple Sources and Sinks , 1995, SIAM J. Comput..

[43]  Robert E. Tarjan,et al.  Dividing a Graph into Triconnected Components , 1973, SIAM J. Comput..

[44]  Martin Mareš Two linear time algorithms for MST on minor closed graph classes , 2002 .

[45]  K. Wagner Über eine Eigenschaft der ebenen Komplexe , 1937 .

[46]  Philip N. Klein,et al.  An O (n log n) algorithm for maximum st-flow in a directed planar graph , 2006, SODA '06.