Improved convergence rates in empirical vector quantizer design

We consider the rate of convergence of the expected distortion redundancy of empirically optimal vector quantizers. Earlier results show that the mean-squared distortion of an empirically optimal quantizer designed from n independent and identically distributed source samples converges uniformly to the optimum at a rate O(1/radicn), and that this rate is sharp in the minimax sense. We prove that for any fixed source distribution supported on a given finite set, the convergence rate is O(1/n) (faster than the minimax lower bound), where the corresponding constant depends on the distribution. For more general source distributions, we provide conditions implying a little bit worse O(log n/n) rate of convergence. In particular, scalar distributions having strictly log-concave densities with bounded support (such as the truncated Gaussian distribution) satisfy these conditions

[1]  Tamás Linder,et al.  The minimax distortion redundancy in empirical quantizer design , 1997, Proceedings of IEEE International Symposium on Information Theory.