Antisense oligonucleotide-mediated perturbation of long non-coding RNA reveals functional features in stem cells and across cell types

Within the scope of FANTOM6 consortium, we perform a large-scale knockdown of 200 long non-coding RNAs (lncRNAs) in human induced pluripotent stem (iPS) cells, and systematically characterize their roles in self-renewal and pluripotency. We find 36 lncRNAs (18%) exhibiting cell growth inhibition From the knockdown of 123 lncRNAs with transcriptome profiling, 36 lncRNAs (29.3%) show molecular phenotypes. Integrating the molecular phenotypes with chromatin-interaction assays further reveals cis- and trans-interacting partners as potential primary targets. Additionally, cell type enrichment analysis identifies lncRNAs associated with pluripotency while the knockdown of LINC02595, CATG00000090305.1 and RP11-148B6.2 modulates colony formation of iPS cells. We compare our results with previously published fibroblasts phenotyping data and find that 2.9% of the lncRNAs exhibit consistent cell growth phenotype, whereas we observe 58.3% agreement in molecular phenotypes. This highlights molecular phenotyping is more comprehensive in revealing affected pathways.

[1]  Adam Williams,et al.  Functional elements of the cis-regulatory lincRNA-p21. , 2022, Cell reports.

[2]  Lingyan Lv,et al.  HDAC6 Is Involved in the Histone Deacetylation of In Vitro Maturation Oocytes and the Reprogramming of Nuclear Transplantation in Pig , 2021, Reproductive Sciences.

[3]  Jay W. Shin,et al.  Functional annotation of human long noncoding RNAs using chromatin conformation data , 2021 .

[4]  Thomas M. Keane,et al.  Twelve years of SAMtools and BCFtools , 2020, GigaScience.

[5]  Jordan A. Ramilowski,et al.  Low Quantity Single Strand CAGE (LQ-ssCAGE) Maps Regulatory Enhancers and Promoters. , 2021, Methods in molecular biology.

[6]  E. Koonin,et al.  Functional Long Non-coding RNAs Evolve from Junk Transcripts , 2020, Cell.

[7]  Yongde Peng,et al.  lncRNA TUG1 promotes the brown remodeling of white adipose tissue by regulating miR‑204‑targeted SIRT1 in diabetic mice. , 2020, International journal of molecular medicine.

[8]  Nimrod D. Rubinstein,et al.  The Tug1 lncRNA locus is essential for male fertility , 2020, Genome Biology.

[9]  Jordan A. Ramilowski,et al.  Low Quantity single strand CAGE (LQ-ssCAGE) maps regulatory enhancers and promoters , 2020, bioRxiv.

[10]  Martin S. Taylor,et al.  Comparative transcriptomics of primary cells in vertebrates , 2020, Genome research.

[11]  Cheng Zhang,et al.  LINC00240 promotes gastric cancer cell proliferation, migration and EMT via the miR‐124‐3p / DNMT3B axis , 2020, Cell biochemistry and function.

[12]  Jun Zhang,et al.  Distinct Processing of lncRNAs Contributes to Non-conserved Functions in Stem Cells , 2020, Cell.

[13]  Q. Dai,et al.  Long non-coding RNA TUG1 promotes cell progression in hepatocellular carcinoma via regulating miR-216b-5p/DLX2 axis , 2020, Cancer Cell International.

[14]  J. Mendell,et al.  Antisense-Mediated Transcript Knockdown Triggers Premature Transcription Termination. , 2020, Molecular cell.

[15]  Ying Chen,et al.  LncRNA TUG1 promoted osteogenic differentiation through promoting bFGF ubiquitination , 2020, In Vitro Cellular & Developmental Biology - Animal.

[16]  Gennady Korotkevich,et al.  Fast gene set enrichment analysis , 2019, bioRxiv.

[17]  Shinichi Morishita,et al.  Noncoding CGG repeat expansions in neuronal intranuclear inclusion disease, oculopharyngodistal myopathy and an overlapping disease , 2019, Nature Genetics.

[18]  Howard Y. Chang,et al.  Functional annotation of human long noncoding RNAs via molecular phenotyping , 2019, bioRxiv.

[19]  Hai-Yan Xu,et al.  Selenoprotein M stimulates the proliferative and metastatic capacities of renal cell carcinoma through activating the PI3K/AKT/mTOR pathway , 2019, Cancer medicine.

[20]  Christopher J. F. Cameron,et al.  RADICL-seq identifies general and cell type–specific principles of genome-wide RNA-chromatin interactions , 2019, Nature Communications.

[21]  J. Rinn,et al.  The Firre locus produces a trans-acting RNA molecule that functions in hematopoiesis , 2019, Nature Communications.

[22]  Ling-Ling Chen,et al.  Cellular functions of long noncoding RNAs , 2019, Nature Cell Biology.

[23]  Ivan G Costa,et al.  Detection of RNA–DNA binding sites in long noncoding RNAs , 2019, Nucleic acids research.

[24]  Vladimir B. Bajic,et al.  LncBook: a curated knowledgebase of human long non-coding RNAs , 2018, Nucleic Acids Res..

[25]  Jun-Kai Cao,et al.  HDAC6 regulates dental mesenchymal stem cells and osteoclast differentiation , 2018, BMC oral health.

[26]  Shan Liu,et al.  Long noncoding RNA TUG1 promotes cell proliferation and migration of renal cell carcinoma via regulation of YAP , 2018, Journal of cellular biochemistry.

[27]  Howard Y. Chang,et al.  Promoter of lncRNA Gene PVT1 Is a Tumor-Suppressor DNA Boundary Element , 2018, Cell.

[28]  Shuangyan Yang,et al.  Long noncoding RNA TUG1 facilitates osteogenic differentiation of periodontal ligament stem cells via interacting with Lin28A , 2018, Cell Death & Disease.

[29]  Aaron T. L. Lun,et al.  Specificity of RNAi, LNA and CRISPRi as loss-of-function methods in transcriptional analysis , 2017, bioRxiv.

[30]  Maite Huarte,et al.  The multidimensional mechanisms of long noncoding RNA function , 2017, Genome Biology.

[31]  Nicola J. Rinaldi,et al.  Genetic effects on gene expression across human tissues , 2017, Nature.

[32]  Bing Zhou,et al.  GRID-seq reveals the global RNA-chromatin interactome , 2017, Nature Biotechnology.

[33]  Jesse M. Engreitz,et al.  Genome-scale activation screen identifies a lncRNA locus regulating a gene neighbourhood , 2017, Nature.

[34]  Gaurav Pandey,et al.  Analysis of Transcriptional Variability in a Large Human iPSC Library Reveals Genetic and Non-genetic Determinants of Heterogeneity. , 2017, Cell stem cell.

[35]  Jordan A. Ramilowski,et al.  An atlas of human long non-coding RNAs with accurate 5′ ends , 2017, Nature.

[36]  Howard Y. Chang,et al.  NONCODING RNA: CRISPRi‐based genome‐scale identification of functional long noncoding RNA loci in human cells , 2017 .

[37]  Ling-Ling Chen Linking Long Noncoding RNA Localization and Function. , 2016, Trends in biochemical sciences.

[38]  M. Behlke,et al.  Cellular localization of long non-coding RNAs affects silencing by RNAi more than by antisense oligonucleotides , 2015, Nucleic acids research.

[39]  Jay W. Shin,et al.  Paradigm shifts in genomics through the FANTOM projects , 2015, Mammalian Genome.

[40]  Piero Carninci,et al.  Nuclear transcriptome profiling of induced pluripotent stem cells and embryonic stem cells identify non-coding loci resistant to reprogramming , 2015, Cell cycle.

[41]  J. Rinn,et al.  Localization and abundance analysis of human lncRNAs at single-cell and single-molecule resolution , 2015, Genome Biology.

[42]  S. Dhanasekaran,et al.  The landscape of long noncoding RNAs in the human transcriptome , 2015, Nature Genetics.

[43]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[44]  A. Ramakrishnan,et al.  Efficient iPS cell generation from blood using episomes and HDAC inhibitors. , 2014, Journal of visualized experiments : JoVE.

[45]  S. Costantini,et al.  Assessment of the Selenoprotein M (SELM) Over-Expression on Human Hepatocellular Carcinoma Tissues by Immunohistochemistry , 2014, European journal of histochemistry : EJH.

[46]  A. Sandelin,et al.  Deep transcriptome profiling of mammalian stem cells supports a regulatory role for retrotransposons in pluripotency maintenance , 2014, Nature Genetics.

[47]  T. Meehan,et al.  An atlas of active enhancers across human cell types and tissues , 2014, Nature.

[48]  Steven R. Head,et al.  An evolutionarily conserved long noncoding RNA TUNA controls pluripotency and neural lineage commitment. , 2014, Molecular cell.

[49]  David R. Kelley,et al.  Topological organization of multichromosomal regions by the long intergenic noncoding RNA Firre , 2014, Nature Structural &Molecular Biology.

[50]  M. Lindow,et al.  A Kinetic Model Explains Why Shorter and Less Affine Enzyme-recruiting Oligonucleotides Can Be More Potent , 2014, Molecular therapy. Nucleic acids.

[51]  David R. Kelley,et al.  Topological Organization of Multi-chromosomal Regions by Firre , 2014, Nature structural & molecular biology.

[52]  Piero Carninci,et al.  Detecting expressed genes using CAGE. , 2014, Methods in molecular biology.

[53]  M. Berry,et al.  Deletion of Selenoprotein M Leads to Obesity without Cognitive Deficits* , 2013, The Journal of Biological Chemistry.

[54]  Yue Wang,et al.  Endogenous miRNA sponge lincRNA-RoR regulates Oct4, Nanog, and Sox2 in human embryonic stem cell self-renewal. , 2013, Developmental cell.

[55]  Mikhail Pachkov,et al.  SwissRegulon, a database of genome-wide annotations of regulatory sites: recent updates , 2012, Nucleic Acids Res..

[56]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[57]  Cole Trapnell,et al.  TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions , 2013, Genome Biology.

[58]  Kevin W Eliceiri,et al.  NIH Image to ImageJ: 25 years of image analysis , 2012, Nature Methods.

[59]  Mikhail Pachkov,et al.  MotEvo: integrated Bayesian probabilistic methods for inferring regulatory sites and motifs on multiple alignments of DNA sequences , 2012, Bioinform..

[60]  Rory Johnson,et al.  Human long non‐coding RNAs promote pluripotency and neuronal differentiation by association with chromatin modifiers and transcription factors , 2012, The EMBO journal.

[61]  Peter F. Stadler,et al.  ViennaRNA Package 2.0 , 2011, Algorithms for Molecular Biology.

[62]  Cole Trapnell,et al.  Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. , 2011, Genes & development.

[63]  J. Rinn,et al.  lincRNAs act in the circuitry controlling pluripotency and differentiation , 2011, Nature.

[64]  J. Rinn,et al.  Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells , 2010, Nature Genetics.

[65]  Aaron R. Quinlan,et al.  Bioinformatics Applications Note Genome Analysis Bedtools: a Flexible Suite of Utilities for Comparing Genomic Features , 2022 .

[66]  Mark D. Robinson,et al.  edgeR: a Bioconductor package for differential expression analysis of digital gene expression data , 2009, Bioinform..

[67]  M. Hasegawa,et al.  Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome , 2009, Proceedings of the Japan Academy. Series B, Physical and biological sciences.

[68]  Martin S. Taylor,et al.  The transcriptional network that controls growth arrest and differentiation in a human myeloid leukemia cell line , 2009, Nature Genetics.

[69]  Michael F. Lin,et al.  Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals , 2009, Nature.

[70]  B. Thiers Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors , 2008 .

[71]  T. Ichisaka,et al.  Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors , 2007, Cell.