Microbial metalloproteomes are largely uncharacterized
暂无分享,去创建一个
Aleksandar Cvetkovic | John A. Tainer | Gary Siuzdak | W. Andrew Lancaster | Jeremy L. Praissman | Farris L. Poole | Francis E. Jenney | Michael P. Thorgersen | Ewa Kalisiak | Junefredo V. Apon | Sunia A. Trauger | Michael W. W. Adams | G. Siuzdak | J. Tainer | M. Adams | W. A. Lancaster | F. Poole | S. Trauger | E. Kalisiak | S. Shanmukh | B. Vaccaro | J. Apon | F. Jenney | A. Menon | M. Thorgersen | A. Cvetkovic | Saratchandra Shanmukh | Angeli Lal Menon | Brian J. Vaccaro | Joseph W. Scott | Steven M. Yannone | S. Yannone
[1] M. Fontecave,et al. The Zn center of the anaerobic ribonucleotide reductase from E. coli , 2009, JBIC Journal of Biological Inorganic Chemistry.
[2] J. Tainer,et al. The structural biochemistry of the superoxide dismutases. , 2010, Biochimica et biophysica acta.
[3] Jeremy L. Praissman,et al. Novel Multiprotein Complexes Identified in the Hyperthermophilic Archaeon Pyrococcus furiosus by Non-denaturing Fractionation of the Native Proteome*S , 2009, Molecular & Cellular Proteomics.
[4] V. Gladyshev,et al. General Trends in Trace Element Utilization Revealed by Comparative Genomic Analyses of Co, Cu, Mo, Ni, and Se* , 2009, The Journal of Biological Chemistry.
[5] R. Huber,et al. Handbook of metalloproteins , 2006 .
[6] M. Adams,et al. Key Role for Sulfur in Peptide Metabolism and in Regulation of Three Hydrogenases in the Hyperthermophilic ArchaeonPyrococcus furiosus , 2001, Journal of bacteriology.
[7] J. Cheong,et al. Metal transporters in intestine and brain: their involvement in metal-associated neurotoxicities , 2007, Human & experimental toxicology.
[8] A. Aiuppa,et al. Trace elements in the thermal groundwaters of Vulcano Island (Sicily) , 2000 .
[9] S. Mann. Biological Inorganic Chemistry: Structure and Reactivity , 2001 .
[10] Janet M. Thornton,et al. Metal-MACiE: a database of metals involved in biological catalysis , 2009, Bioinform..
[11] R. Balasubramanian,et al. Microwave assisted sample preparation for determining water-soluble fraction of trace elements in urban airborne particulate matter: evaluation of bioavailability. , 2006, Analytica chimica acta.
[12] J. Tainer,et al. Supplemental Experimental Procedures Cloning and Recombinant Protein Production , 2022 .
[13] S. Martinis,et al. In vitro assays for the determination of aminoacyl-tRNA synthetase editing activity. , 2008, Methods.
[14] S. Ragsdale,et al. Nickel-based Enzyme Systems* , 2009, The Journal of Biological Chemistry.
[15] M. Högbom,et al. High throughput methods for analyzing transition metals in proteins on a microgram scale. , 2008, Methods in molecular biology.
[16] S. Chai,et al. FE(II) Is the Native Cofactor for Escherichia coli Methionine Aminopeptidase* , 2008, Journal of Biological Chemistry.
[17] J. Szpunar,et al. Mass spectrometry in bioinorganic analytical chemistry. , 2006, Mass spectrometry reviews.
[18] M. Summers,et al. Determinants of protein hyperthermostability: purification and amino acid sequence of rubredoxin from the hyperthermophilic archaebacterium Pyrococcus furiosus and secondary structure of the zinc adduct by NMR. , 1991, Biochemistry.
[19] J. Sambrook,et al. Molecular Cloning: A Laboratory Manual , 2001 .
[20] Michael Sullivan,et al. Metalloproteomics: high-throughput structural and functional annotation of proteins in structural genomics. , 2005, Structure.
[21] Narayanaswamy Srinivasan,et al. Structure-Based Phylogeny as a Diagnostic for Functional Characterization of Proteins with a Cupin Fold , 2009, PloS one.
[22] I. Pitas,et al. Conservation of metal‐coordinating residues , 2007, Proteins.
[23] K. Stetter,et al. Pyrococcus furiosus sp. nov. represents a novel genus of marine heterotrophic archaebacteria growing optimally at 100°C , 1986, Archives of Microbiology.
[24] John A. Tainer,et al. MDB: the Metalloprotein Database and Browser at The Scripps Research Institute , 2002, Nucleic Acids Res..
[25] M. Adams,et al. [5] Rubredoxin from Pyrococcus furiosus , 2001 .
[26] Robert D. Finn,et al. InterPro: the integrative protein signature database , 2008, Nucleic Acids Res..
[27] Alfredo Sanz-Medel,et al. Elemental mass spectrometry for quantitative proteomics , 2008, Analytical and bioanalytical chemistry.
[28] R. Mendel,et al. Molybdenum cofactors, enzymes and pathways , 2009, Nature.
[29] Yong Cai,et al. Determination of arsenic in seagrass using inductively coupled plasma mass spectrometry , 2000 .
[30] Rolf Apweiler,et al. InterProScan: protein domains identifier , 2005, Nucleic Acids Res..
[31] Nanjiang Shu,et al. BIOINFORMATICS ORIGINAL PAPER doi:10.1093/bioinformatics/btm618 Sequence analysis Prediction of zinc-binding sites in proteins from sequence , 2008 .
[32] Michael W. W. Adams,et al. Insights into the Metabolism of Elemental Sulfur by the Hyperthermophilic Archaeon Pyrococcus furiosus: Characterization of a Coenzyme A- Dependent NAD(P)H Sulfur Oxidoreductase , 2007, Journal of bacteriology.
[33] Robert C. Hopkins,et al. Defining Genes in the Genome of the Hyperthermophilic Archaeon Pyrococcus furiosus: Implications for All Microbial Genomes , 2005, Journal of bacteriology.
[34] M. Adams,et al. Rubredoxin from Pyrococcus furiosus. , 2001, Methods in enzymology.
[35] W. Zillig,et al. The Sulfolobus-“Caldariella” group: Taxonomy on the basis of the structure of DNA-dependent RNA polymerases , 1980, Archives of Microbiology.
[36] S. Datta,et al. Cold Shock of a Hyperthermophilic Archaeon: Pyrococcus furiosus Exhibits Multiple Responses to a Suboptimal Growth Temperature with a Key Role for Membrane-Bound Glycoproteins , 2005, Journal of bacteriology.
[37] B. Katzung. Basic and Clinical Pharmacology , 1982 .
[38] Dianne Ford,et al. Metalloproteins and metal sensing , 2009, Nature.