Tripartite-to-Bipartite Entanglement Transformation by Stochastic Local Operations and Classical Communication and the Structure of Matrix Spaces

We study the problem of transforming a tripartite pure state to a bipartite one using stochastic local operations and classical communication (SLOCC). It is known that the tripartite-to-bipartite SLOCC convertibility is characterized by the maximal Schmidt rank of the given tripartite state, i.e. the largest Schmidt rank over those bipartite states lying in the support of the reduced density operator. In this paper, we further study this problem and exhibit novel results in both multi-copy and asymptotic settings, utilizing powerful results from the structure of matrix spaces. In the multi-copy regime, we observe that the maximal Schmidt rank is strictly super-multiplicative, i.e. the maximal Schmidt rank of the tensor product of two tripartite pure states can be strictly larger than the product of their maximal Schmidt ranks. We then provide a full characterization of those tripartite states whose maximal Schmidt rank is strictly super-multiplicative when taking tensor product with itself. Notice that such tripartite states admit strict advantages in tripartite-to-bipartite SLOCC transformation when multiple copies are provided. In the asymptotic setting, we focus on determining the tripartite-to-bipartite SLOCC entanglement transformation rate. Computing this rate turns out to be equivalent to computing the asymptotic maximal Schmidt rank of the tripartite state, defined as the regularization of its maximal Schmidt rank. Despite the difficulty caused by the super-multiplicative property, we provide explicit formulas for evaluating the asymptotic maximal Schmidt ranks of two important families of tripartite pure states by resorting to certain results of the structure of matrix spaces, including the study of matrix semi-invariants. These formulas turn out to be powerful enough to give a sufficient and necessary condition to determine whether a given tripartite pure state can be transformed to the bipartite maximally entangled state under SLOCC, in the asymptotic setting. Applying the recent progress on the non-commutative rank problem, we can verify this condition in deterministic polynomial time.

[1]  Jan Draisma,et al.  The Hilbert Null-cone on Tuples of Matrices and Bilinear Forms , 2006 .

[2]  Christophe Reutenauer,et al.  COMMUTATIVE/NONCOMMUTATIVE RANK OF LINEAR MATRICES AND SUBSPACES OF MATRICES OF LOW RANK , 2004 .

[3]  Runyao Duan,et al.  Tripartite entanglement transformations and tensor rank. , 2008, Physical review letters.

[4]  R. Werner,et al.  Evaluating capacities of bosonic Gaussian channels , 1999, quant-ph/9912067.

[5]  David P. DiVincenzo,et al.  Entanglement of Assistance , 1998, QCQC.

[6]  G. Vidal Entanglement of pure states for a single copy , 1999, quant-ph/9902033.

[7]  Mátyás Domokos,et al.  Semi-invariants of quivers as determinants , 2001 .

[8]  Johan Håstad,et al.  Tensor Rank is NP-Complete , 1989, ICALP.

[9]  Barry C. Sanders,et al.  Deterministic entanglement of assistance and monogamy constraints (4 pages) , 2005 .

[10]  Runyao Duan,et al.  Multipartite-to-bipartite entanglement transformations and polynomial identity testing , 2010 .

[11]  P. M. Cohn,et al.  The word problem for free fields: a correction and an addendum , 1975, Journal of Symbolic Logic.

[12]  O. Cohen,et al.  Unlocking Hidden Entanglement with Classical Information , 1998 .

[13]  Runyao Duan,et al.  Improved semidefinite programming upper bound on distillable entanglement , 2016, 1601.07940.

[14]  Marek Karpinski,et al.  Deterministic Polynomial Time Algorithms for Matrix Completion Problems , 2010, SIAM J. Comput..

[15]  Harm Derksen,et al.  Semi-invariants of quivers and saturation for Littlewood-Richardson coefficients , 2000 .

[16]  M. Popp,et al.  Localizable Entanglement , 2004 .

[17]  Jens Eisert,et al.  Entanglement combing. , 2009, Physical review letters.

[18]  Matthias Christandl,et al.  Asymptotic entanglement transformation between W and GHZ states , 2013, 1310.3244.

[19]  Runyao Duan,et al.  Tensor rank and stochastic entanglement catalysis for multipartite pure states. , 2010, Physical review letters.

[20]  L. Lovász Matching Theory (North-Holland mathematics studies) , 1986 .

[21]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[22]  Avi Wigderson,et al.  A Deterministic Polynomial Time Algorithm for Non-commutative Rational Identity Testing , 2015, 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS).

[23]  Seinosuke Toda,et al.  Classes of Arithmetic Circuits Capturing the Complexity of Computing the Determinant , 1992 .

[24]  Richard Zippel,et al.  Probabilistic algorithms for sparse polynomials , 1979, EUROSAM.

[25]  Andreas Winter,et al.  Partial quantum information , 2005, Nature.

[26]  J. Edmonds Systems of distinct representatives and linear algebra , 1967 .

[27]  Youming Qiao,et al.  On generating the ring of matrix semi-invariants , 2015, ArXiv.

[28]  Simone Severini,et al.  Zero-Error Communication via Quantum Channels, Noncommutative Graphs, and a Quantum Lovász Number , 2010, IEEE Transactions on Information Theory.

[29]  Michel Van den Bergh,et al.  Semi-invariants of quivers for arbitrary dimension vectors , 1999 .

[30]  Manuel Blum,et al.  Designing programs that check their work , 1989, STOC '89.

[31]  Avi Wigderson,et al.  Non-commutative arithmetic circuits with division , 2014, Theory Comput..

[32]  Michael M. Wolf,et al.  Unital Quantum Channels – Convex Structure and Revivals of Birkhoff’s Theorem , 2008, 0806.2820.

[33]  Runyao Duan,et al.  Nonadditivity of Rains' bound for distillable entanglement , 2016, 1605.00348.

[34]  Runyao Duan,et al.  Semidefinite Programming Strong Converse Bounds for Classical Capacity , 2016, IEEE Transactions on Information Theory.

[35]  R. Duan,et al.  Tensor rank of the tripartite state , 2010 .

[36]  T. G. Room The Geometry of Determinantal Loci , 1938 .

[37]  Russell Impagliazzo,et al.  Derandomizing Polynomial Identity Tests Means Proving Circuit Lower Bounds , 2003, STOC '03.

[38]  László Lovász,et al.  Singular spaces of matrices and their application in combinatorics , 1989 .

[39]  Runyao Duan,et al.  Obtaining a W state from a Greenberger-Horne-Zeilinger state via stochastic local operations and classical communication with a rate approaching unity. , 2014, Physical review letters.

[40]  Jacob T. Schwartz,et al.  Fast Probabilistic Algorithms for Verification of Polynomial Identities , 1980, J. ACM.

[41]  Paul M. Cohn,et al.  The Embedding of Firs in Skew Fields , 1971 .

[42]  Youming Qiao,et al.  Constructive noncommutative rank computation in deterministic polynomial time over fields of arbitrary characteristics , 2015, ArXiv.

[43]  N. Wallach,et al.  Classification of multipartite entanglement of all finite dimensionality. , 2013, Physical review letters.

[44]  M. Nielsen,et al.  Information transmission through a noisy quantum channel , 1997, quant-ph/9702049.

[45]  Leonid Gurvits,et al.  Classical complexity and quantum entanglement , 2004, J. Comput. Syst. Sci..

[46]  László Lovász,et al.  On determinants, matchings, and random algorithms , 1979, FCT.

[47]  J I Cirac,et al.  Entanglement versus correlations in spin systems. , 2004, Physical review letters.

[48]  Noam Nisan,et al.  Hardness vs. randomness , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[49]  Youming Qiao,et al.  Non-commutative Edmonds’ problem and matrix semi-invariants , 2015, computational complexity.

[50]  P. Hall On Representatives of Subsets , 1935 .

[51]  J. Cirac,et al.  Three qubits can be entangled in two inequivalent ways , 2000, quant-ph/0005115.

[52]  Joe W. Harris,et al.  Vector spaces of matrices of low rank , 1988 .

[53]  Robert W. Spekkens,et al.  Entanglement of assistance is not a bipartite measure nor a tripartite monotone , 2006 .

[54]  H. Lo,et al.  Random bipartite entanglement from W and W-like states. , 2006, Physical review letters.

[55]  R. Duan,et al.  Tensor rank of the tripartite state |W>{sup xn} , 2009, 0910.0986.

[56]  H. Lo,et al.  Concentrating entanglement by local actions: Beyond mean values , 1997, quant-ph/9707038.

[57]  Harm Derksen,et al.  Polynomial degree bounds for matrix semi-invariants , 2015, ArXiv.

[58]  John A. Smolin,et al.  Entanglement of assistance and multipartite state distillation , 2005 .

[59]  Andreas Winter On environment-assisted capacities of quantum channels , 2005 .

[60]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[62]  Barry C. Sanders,et al.  Deterministic entanglement of assistance and monogamy constraints , 2005 .

[63]  G. Vidal,et al.  Computable measure of entanglement , 2001, quant-ph/0102117.

[64]  Manindra Agrawal,et al.  Primality and identity testing via Chinese remaindering , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[65]  Graeme Smith,et al.  Quantum Communication with Zero-Capacity Channels , 2008, Science.

[66]  Runyao Duan,et al.  A semidefinite programming upper bound of quantum capacity , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).