Comparing and selecting spatial predictors using local criteria

Remote sensing technology for the study of Earth and its environment has led to “Big Data” that, paradoxically, have global extent but may be spatially sparse. Furthermore, the variability in the measurement error and the latent process error may not fit conveniently into the Gaussian linear paradigm. In this paper, we consider the problem of selecting a predictor from a finite collection of spatial predictors of a spatial random process defined on $$D$$D, a subset of $$d$$d-dimensional Euclidean space. Critically, we make no statistical distributional assumptions other than additive measurement error. In this nonparametric setting, one could use a criterion based on a validation dataset to select a spatial predictor for all of $$D$$D. Instead, we propose local criteria based on validation data to select a predictor at each spatial location in $$D$$D; the result is a hybrid combination of the spatial predictors, which we call a locally selected predictor (LSP). We consider selection from a collection of some of the classical and more recently proposed spatial predictors currently available. In a simulation study, the relative performances of various LSPs, as well as the performance of each of the individual spatial predictors in the collection, are assessed. “Big Data” are always challenging, and here we apply LSP to a very large global spatial dataset of atmospheric $$\mathrm {CO}_{2}$$CO2 measurements.

[1]  C. L. Mallows Some comments on C_p , 1973 .

[2]  R. A. Leibler,et al.  On Information and Sufficiency , 1951 .

[3]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[4]  Jan Larsen,et al.  On optimal data split for generalization estimation and model selection , 1999, Neural Networks for Signal Processing IX: Proceedings of the 1999 IEEE Signal Processing Society Workshop (Cat. No.98TH8468).

[5]  Hua Liang,et al.  A Note on Conditional AIC for Linear Mixed-Effects Models. , 2008, Biometrika.

[6]  H. Akaike A new look at the statistical model identification , 1974 .

[7]  Robert Tibshirani,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition , 2001, Springer Series in Statistics.

[8]  William L. Smith,et al.  AIRS: Improving Weather Forecasting and Providing New Data on Greenhouse Gases. , 2006 .

[9]  A. Gelfand,et al.  Gaussian predictive process models for large spatial data sets , 2008, Journal of the Royal Statistical Society. Series B, Statistical methodology.

[10]  Mike Rees,et al.  5. Statistics for Spatial Data , 1993 .

[11]  D. Nychka,et al.  A Multiresolution Gaussian Process Model for the Analysis of Large Spatial Datasets , 2015 .

[12]  Hsin-Cheng Huang,et al.  An improved Cp criterion for spline smoothing , 2011 .

[13]  Jun Zhu,et al.  Web-based Supplementary Materials for "On selection of spatial linear models for lattice data" , 2009 .

[14]  Brian D. Ripley,et al.  Pattern Recognition and Neural Networks , 1996 .

[15]  H. Rue,et al.  An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach , 2011 .

[16]  D. Madigan,et al.  Bayesian Model Averaging for Linear Regression Models , 1997 .

[17]  S. Müller,et al.  Model Selection in Linear Mixed Models , 2013, 1306.2427.

[18]  B. Efron The Estimation of Prediction Error , 2004 .

[19]  Carol A. Gotway,et al.  Statistical Methods for Spatial Data Analysis , 2004 .

[20]  G. Matheron Principles of geostatistics , 1963 .

[21]  Noel A Cressie,et al.  Using temporal variability to improve spatial mapping with application to satellite data , 2010 .

[22]  C. Mallows Some Comments on Cp , 2000, Technometrics.

[23]  Noel A Cressie,et al.  Global statistical analysis of MISR aerosol data: a massive data product from NASA's Terra satellite , 2007 .

[24]  Noel A Cressie,et al.  Selection of rank and basis functions in the Spatial Random Effects Model , 2011 .

[25]  N. Cressie,et al.  Spatial Statistical Data Fusion for Remote Sensing Applications , 2012 .

[26]  David R. Anderson,et al.  Model Selection and Multimodel Inference , 2003 .

[27]  Sw. Banerjee,et al.  Hierarchical Modeling and Analysis for Spatial Data , 2003 .

[28]  Andrew O. Finley,et al.  Improving the performance of predictive process modeling for large datasets , 2009, Comput. Stat. Data Anal..

[29]  Christopher K. Wikle,et al.  Low-Rank Representations for Spatial Processes , 2010 .

[30]  J. Andrew Royle,et al.  Efficient statistical mapping of avian count data , 2005, Environmental and Ecological Statistics.

[31]  Hsin-Cheng Huang,et al.  Optimal Geostatistical Model Selection , 2007 .

[32]  Hsin-Cheng Huang,et al.  A new approach for selecting the number of factors , 2010, Comput. Stat. Data Anal..

[33]  Keming Yu,et al.  Bayesian Mode Regression , 2012, 1208.0579.

[34]  N. Cressie The origins of kriging , 1990 .

[35]  H. Rue,et al.  Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations , 2009 .

[36]  Matthias Katzfuss,et al.  Spatio‐temporal smoothing and EM estimation for massive remote‐sensing data sets , 2011 .

[37]  Elvezio Ronchetti,et al.  Robustness Aspects of Model Choice , 1997 .

[38]  C. Stein Estimation of the Mean of a Multivariate Normal Distribution , 1981 .

[39]  N. Cressie,et al.  Fixed rank kriging for very large spatial data sets , 2008 .

[40]  G. Kitagawa,et al.  Generalised information criteria in model selection , 1996 .

[41]  Noel A Cressie,et al.  Statistics for Spatio-Temporal Data , 2011 .

[42]  Hsin-Cheng Huang,et al.  Fixed and random effects selection in nonparametric additive mixed models , 2012 .

[43]  B. Efron How Biased is the Apparent Error Rate of a Prediction Rule , 1986 .

[44]  Hsin-Cheng Huang,et al.  Geostatistical model averaging based on conditional information criteria , 2012, Environmental and Ecological Statistics.

[45]  G. Wahba Spline models for observational data , 1990 .

[46]  J. Shao AN ASYMPTOTIC THEORY FOR LINEAR MODEL SELECTION , 1997 .

[47]  Noel A Cressie,et al.  Local spatial-predictor selection , 2013 .

[48]  Elvezio Ronchetti,et al.  A Robust Version of Mallows's C P , 1994 .

[49]  Klaus-Robert Müller,et al.  Asymptotic statistical theory of overtraining and cross-validation , 1997, IEEE Trans. Neural Networks.

[50]  B. Efron Estimating the Error Rate of a Prediction Rule: Improvement on Cross-Validation , 1983 .

[51]  I. Johnstone,et al.  Ideal spatial adaptation by wavelet shrinkage , 1994 .

[52]  David A. Landgrebe,et al.  Signal Theory Methods in Multispectral Remote Sensing , 2003 .

[53]  F. Vaida,et al.  Conditional Akaike information for mixed-effects models , 2005 .

[54]  S. Greven,et al.  On the behaviour of marginal and conditional AIC in linear mixed models , 2010 .