Optimality conditions for nonconvex semidefinite programming

Abstract.This paper concerns nonlinear semidefinite programming problems for which no convexity assumptions can be made. We derive first- and second-order optimality conditions analogous to those for nonlinear programming. Using techniques similar to those used in nonlinear programming, we extend existing theory to cover situations where the constraint matrix is structurally sparse. The discussion covers the case when strict complementarity does not hold. The regularity conditions used are consistent with those of nonlinear programming in the sense that the conventional optimality conditions for nonlinear programming are obtained when the constraint matrix is diagonal.

[1]  Anthony V. Fiacco,et al.  Nonlinear programming;: Sequential unconstrained minimization techniques , 1968 .

[2]  Michael L. Overton,et al.  Complementarity and nondegeneracy in semidefinite programming , 1997, Math. Program..

[3]  U. Ringertz EIGENVALUES IN OPTIMUM STRUCTURAL DESIGN , 1997 .

[4]  Stephen P. Boyd,et al.  Semidefinite Programming , 1996, SIAM Rev..

[5]  Takashi Tsuchiya,et al.  Polynomial Convergence of a New Family of Primal-Dual Algorithms for Semidefinite Programming , 1999, SIAM J. Optim..

[6]  A. Ben-Tal Second-order and related extremality conditions in nonlinear programming , 1980 .

[7]  Alexander Shapiro,et al.  On Eigenvalue Optimization , 1995, SIAM J. Optim..

[8]  Motakuri V. Ramana,et al.  An exact duality theory for semidefinite programming and its complexity implications , 1997, Math. Program..

[9]  Renato D. C. Monteiro,et al.  Primal-Dual Path-Following Algorithms for Semidefinite Programming , 1997, SIAM J. Optim..

[10]  Yurii Nesterov,et al.  Interior-point polynomial algorithms in convex programming , 1994, Siam studies in applied mathematics.

[11]  R. Fletcher Semi-Definite Matrix Constraints in Optimization , 1985 .

[12]  David G. Luenberger,et al.  Linear and nonlinear programming , 1984 .

[13]  Shinji Hara,et al.  Interior-Point Methods for the Monotone Semidefinite Linear Complementarity Problem in Symmetric Matrices , 1997, SIAM J. Optim..

[14]  Katta G. Murty,et al.  Some NP-complete problems in quadratic and nonlinear programming , 1987, Math. Program..

[15]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[16]  Robert J. Vanderbei,et al.  An Interior-Point Method for Semidefinite Programming , 1996, SIAM J. Optim..

[17]  Alexander Shapiro,et al.  Sensitivity Analysis of Optimization Problems Under Second Order Regular Constraints , 1998, Math. Oper. Res..

[18]  Alexander Shapiro,et al.  First and second order analysis of nonlinear semidefinite programs , 1997, Math. Program..

[19]  Alexander Shapiro,et al.  Second Order Optimality Conditions Based on Parabolic Second Order Tangent Sets , 1999, SIAM J. Optim..

[20]  Farid Alizadeh,et al.  Interior Point Methods in Semidefinite Programming with Applications to Combinatorial Optimization , 1995, SIAM J. Optim..

[21]  Michael L. Overton,et al.  Primal-Dual Interior-Point Methods for Semidefinite Programming: Convergence Rates, Stability and Numerical Results , 1998, SIAM J. Optim..

[22]  R. Cottle Manifestations of the Schur complement , 1974 .

[23]  Michael L. Overton,et al.  Large-Scale Optimization of Eigenvalues , 1990, SIAM J. Optim..

[24]  P. Pardalos,et al.  Checking local optimality in constrained quadratic programming is NP-hard , 1988 .