Chip-Scale Plasmonic Sum Frequency Generation

Plasmonics provides a promising candidate for nonlinear optical interactions because of its ability to enable extreme light concentration at the nanoscale. We demonstrate on-chip plasmonic sum frequency generation (SFG) with a metal—dielectric–metal nanostructure. The two cross-polarized pumps (800 and 1500 nm) are designed to match the two resonances of this plasmonic nanostructure to make the most of the electric field enhancement and spatial overlapping of the modes. Since these two resonances are predominantly determined by the sizes of the top metallic nanostructures in the same direction, the SFG (521 nm) can be independently controlled by each pump via changing these sizes. This study exerts the full strength of plasmonic resonance induced field enhancement, thereby paving a way toward using nanoplasmonics for future nonlinear nanophotonics applications, such as optical information processing, imaging, and spectroscopy.

[1]  Wei E. I. Sha,et al.  Full Hydrodynamic Model of Nonlinear Electromagnetic Response in Metallic Metamaterials (Invited Paper) , 2016 .

[2]  Qiang Li,et al.  Wavelength and Thermal Distribution Selectable Microbolometers Based on Metamaterial Absorbers , 2015, IEEE Photonics Journal.

[3]  Tal Ellenbogen,et al.  Controlling light with metamaterial-based nonlinear photonic crystals , 2015, Nature Photonics.

[4]  A. Bouhelier,et al.  Nonlinear photon-assisted tunneling transport in optical gap antennas. , 2014, Nano letters.

[5]  Yaochun Shen,et al.  Sum‐Frequency Vibrational Spectroscopy on Water Interfaces: Polar Orientation of Water Molecules at Interfaces , 2006 .

[6]  Reuven Gordon,et al.  Probing the quantum tunneling limit of plasmonic enhancement by third harmonic generation. , 2014, Nano letters.

[7]  C. Volcke,et al.  Total internal reflection sum-frequency generation spectroscopy and dense gold nanoparticles monolayer: a route for probing adsorbed molecules , 2007 .

[8]  L. J. Jiang,et al.  Strongly enhanced and directionally tunable second-harmonic radiation from a plasmonic particle-in-cavity nanoantenna , 2016, 1605.03268.

[9]  Hubert H. Girault,et al.  Self-assembled organic monolayers on gold nanoparticles: A study by sum-frequency generation combined with UV-vis spectroscopy , 2005 .

[10]  Jérémy Butet,et al.  Augmenting second harmonic generation using Fano resonances in plasmonic systems. , 2013, Nano letters.

[11]  O. Muskens,et al.  Tailoring second-harmonic generation in single L-shaped plasmonic nanoantennas from the capacitive to conductive coupling regime , 2015 .

[12]  M. Kauranen,et al.  Second-harmonic generation imaging of metal nano-objects with cylindrical vector beams. , 2012, Nano letters.

[13]  Andrea Alù,et al.  Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions , 2014, CLEO 2014.

[14]  Ji‐Xin Cheng,et al.  Imaging Gold Nanorods by Plasmon-Resonance-Enhanced Four Wave Mixing , 2009 .

[15]  Yonghao Cui,et al.  Electrifying photonic metamaterials for tunable nonlinear optics , 2014, Nature Communications.

[16]  O. Martin,et al.  Optical Second Harmonic Generation in Plasmonic Nanostructures: From Fundamental Principles to Advanced Applications. , 2015, ACS nano.

[17]  Y. Shen,et al.  In situ sum-frequency vibrational spectroscopy of electrochemical interfaces with surface plasmon resonance , 2014, Proceedings of the National Academy of Sciences.

[18]  M. Linford,et al.  Back-Surface Gold Mirrors for Vibrationally Resonant Sum-Frequency (VR-SFG) Spectroscopy Using 3-Mercaptopropyltrimethoxysilane as an Adhesion Promoter , 2011, Applied spectroscopy.

[19]  T. Kawai,et al.  Sum Frequency Generation on Surfactant-Coated Gold Nanoparticles , 2000 .

[20]  B. Mazzolai,et al.  Barium titanate core – gold shell nanoparticles for hyperthermia treatments , 2013, International journal of nanomedicine.

[21]  P. Davies,et al.  The structure of oleamide films at the aluminum/oil interface and aluminum/air interface studied by Sum Frequency Generation (SFG) vibrational spectroscopy and Reflection Absorption Infrared Spectroscopy (RAIRS). , 2009, ACS applied materials & interfaces.

[22]  Yu Zhang,et al.  Coherent Fano resonances in a plasmonic nanocluster enhance optical four-wave mixing , 2013, Proceedings of the National Academy of Sciences.

[23]  Jason W. Fleischer,et al.  Nonlinear Abbe theory , 2013, Nature Photonics.

[24]  A. Zayats,et al.  Nonlinear plasmonics , 2012, Nature Photonics.

[25]  Yuri S. Kivshar,et al.  Nonlinear Interference and Tailorable Third-Harmonic Generation from Dielectric Oligomers , 2015 .

[26]  Harald Giessen,et al.  Third Harmonic Mechanism in Complex Plasmonic Fano Structures , 2014, ACS photonics.

[27]  Jeffrey N. Anker,et al.  Biosensing with plasmonic nanosensors. , 2008, Nature materials.

[28]  Achani K. Yatawara,et al.  Effect of nanoscale geometry on molecular conformation: vibrational sum-frequency generation of alkanethiols on gold nanoparticles. , 2006, Journal of the American Chemical Society.

[29]  Lukas Novotny,et al.  Optical frequency mixing at coupled gold nanoparticles. , 2007, Physical review letters.

[30]  Zi Jing Wong,et al.  Phase Mismatch–Free Nonlinear Propagation in Optical Zero-Index Materials , 2013, Science.

[31]  David R. Smith,et al.  Third-Harmonic Generation Enhancement by Film-Coupled Plasmonic Stripe Resonators , 2014 .

[32]  G. Wiederrecht,et al.  Ultrafast Optical Modulation of Second- and Third-Harmonic Generation from Cut-Disk-Based Metasurfaces , 2016 .

[33]  Jie Deng,et al.  Polarization-Independent Multiple Fano Resonances in Plasmonic Nonamers for Multimode-Matching Enhanced Multiband Second-Harmonic Generation. , 2016, ACS nano.

[34]  Mengkun Liu,et al.  An ultrafast plasmonic tuning knob , 2016, Nature Photonics.

[35]  Vicki H. Grassian,et al.  FT-IR Study of Water Adsorption on Aluminum Oxide Surfaces , 2003 .

[36]  David R. Smith,et al.  Controlled-reflectance surfaces with film-coupled colloidal nanoantennas , 2012, Nature.

[37]  Naomi J Halas,et al.  Three-dimensional nanostructures as highly efficient generators of second harmonic light. , 2011, Nano letters.

[38]  M. Orrit,et al.  Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod. , 2012, Nature nanotechnology.

[39]  Hao Shen,et al.  Quantitative super-resolution imaging uncovers reactivity patterns on single nanocatalysts. , 2012, Nature nanotechnology.

[40]  J. Butet,et al.  Sensing with multipolar second harmonic generation from spherical metallic nanoparticles. , 2012, Nano letters.

[41]  Harald Giessen,et al.  Doubling the efficiency of third harmonic generation by positioning ITO nanocrystals into the hot-spot of plasmonic gap-antennas. , 2014, Nano letters.

[42]  L. Novotný,et al.  Nonlinear plasmonics with gold nanoparticle antennas , 2009 .

[43]  Mohsen Rahmani,et al.  University of Birmingham Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna , 2016 .

[44]  Jing Wang,et al.  High performance optical absorber based on a plasmonic metamaterial , 2010 .

[45]  Lynn F. Lee,et al.  Nonlinear Chemical Imaging Nanomicroscopy: From Second and Third Harmonic Generation to Multiplex (Broad-Bandwidth) Sum Frequency Generation Near-Field Scanning Optical Microscopy , 2002 .

[46]  N. Rotenberg,et al.  Ultrafast Active Plasmonics on Gold Films , 2011 .

[47]  Michael J. Campolongo,et al.  Building plasmonic nanostructures with DNA. , 2011, Nature nanotechnology.

[48]  Yu Zhang,et al.  Toward Surface Plasmon-Enhanced Optical Parametric Amplification (SPOPA) with Engineered Nanoparticles: A Nanoscale Tunable Infrared Source. , 2016, Nano letters.

[49]  Alexey V. Krasavin,et al.  Nonperturbative hydrodynamic model for multiple harmonics generation in metallic nanostructures , 2014, 1405.4903.

[50]  Harald Giessen,et al.  Nonlinear Plasmonic Sensing. , 2016, Nano letters.

[51]  L. J. Jiang,et al.  Compact Nonlinear Yagi-Uda Nanoantennas , 2016, Scientific Reports.

[52]  Achani K. Yatawara,et al.  Vibrational sum frequency generation spectroscopy of dodecanethiol on metal nanoparticles , 2007 .

[53]  S. Roke,et al.  Nonlinear Mie theory for second-harmonic and sum-frequency scattering , 2009 .

[54]  Shuang Zhang,et al.  Optical negative refraction by four-wave mixing in thin metallic nanostructures. , 2011, Nature materials.

[55]  Yong Zeng,et al.  Generalization of the FDTD algorithm for simulations of hydrodynamic nonlinear Drude model , 2010, J. Comput. Phys..

[56]  A. Locatelli,et al.  Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation. , 2014, Nature nanotechnology.