Bi-layer Kinetic Inductance Detectors for space observations between 80-120 GHz

We have developed Lumped Element Kinetic Inductance Detectors (LEKID) sensitive in the frequency band from 80 to 120~GHz. In this work, we take advantage of the so-called proximity effect to reduce the superconducting gap of Aluminium, otherwise strongly suppressing the LEKID response for frequencies smaller than 100~GHz. We have designed, produced and optically tested various fully multiplexed arrays based on multi-layers combinations of Aluminium (Al) and Titanium (Ti). Their sensitivities have been measured using a dedicated closed-circle 100 mK dilution cryostat and a sky simulator allowing to reproduce realistic observation conditions. The spectral response has been characterised with a Martin-Puplett interferometer up to THz frequencies, and with a resolution of 3~GHz. We demonstrate that Ti-Al LEKID can reach an optical sensitivity of about $1.4$ $10^{-17}$~$W/Hz^{0.5}$ (best pixel), or $2.2$ $10^{-17}$~$W/Hz^{0.5}$ when averaged over the whole array. The optical background was set to roughly 0.4~pW per pixel, typical for future space observatories in this particular band. The performance is close to a sensitivity of twice the CMB photon noise limit at 100~GHz which drove the design of the Planck HFI instrument. This figure remains the baseline for the next generation of millimetre-wave space satellites.

[1]  N. Llombart,et al.  Operation of a titanium nitride superconducting microresonator detector in the nonlinear regime , 2013, 1305.4281.

[2]  K. Usadel,et al.  GENERALIZED DIFFUSION EQUATION FOR SUPERCONDUCTING ALLOYS. , 1970 .

[3]  H. Leduc,et al.  A broadband superconducting detector suitable for use in large arrays , 2003, Nature.

[4]  N. Ponthieu,et al.  First observation of the thermal Sunyaev-Zel’dovich effect with kinetic inductance detectors , 2013, 1310.6237.

[5]  T. M. Klapwijk,et al.  Anomalous response of superconducting titanium nitride resonators to terahertz radiation , 2014, 1408.0270.

[6]  F. D'esert,et al.  Model of the polarized foreground diffuse Galactic emissions from 33 to 353 GHz , 2012, 1204.3659.

[7]  L. Cooper Superconductivity in the neighborhood of metallic contacts , 1961 .

[8]  Kent D. Irwin,et al.  Transition-Edge Sensors , 2005 .

[9]  J. J. A. Baselmans,et al.  A DUAL-BAND MILLIMETER-WAVE KINETIC INDUCTANCE CAMERA FOR THE IRAM 30 m TELESCOPE , 2011, 1102.0870.

[10]  A. Benoit,et al.  Niobium Silicon Alloys for Kinetic Inductance Detectors , 2013, 1312.3588.

[11]  M. V. Fernandes,et al.  Search for TeV Gamma-ray Emission from GRB 100621A, an extremely bright GRB in X-rays, with H.E.S.S , 2014, 1405.0488.

[12]  S. Oguri,et al.  Mission Design of LiteBIRD , 2013, 1311.2847.

[13]  John M. Martinis,et al.  Calculation of Tc in a Normal-Superconductor Bilayer Using the Microscopic-Based Usadel Theory , 2000 .

[14]  A. Banday,et al.  Joint 3D modelling of the polarized Galactic synchrotron and thermal dust foreground diffuse emission , 2010, 1003.4450.

[15]  Jonas Zmuidzinas,et al.  Titanium Nitride Films for Ultrasensitive Microresonator Detectors , 2010, 1003.5584.

[16]  M. Halpern,et al.  The Primordial Inflation Explorer (PIXIE): a nulling polarimeter for cosmic microwave background observations , 2011, 1105.2044.

[17]  N. Ponthieu,et al.  Performance and calibration of the NIKA camera at the IRAM 30 m telescope , 2014, 1402.0260.

[18]  B. Phlips,et al.  Nuclear Instruments and Methods in Physics Research A , 2015 .

[19]  N. Ponthieu,et al.  Improved mm-wave photometry for kinetic inductance detectors , 2013 .

[20]  Calibration and systematic error analysis for the COBE-DMR four-year sky maps , 1996, astro-ph/9601066.

[21]  Michael M. Frank,et al.  Proximity effect in iridium‐gold bilayers , 1994 .

[22]  Christian Enss,et al.  Cryogenic particle detection , 2005 .

[23]  W. White,et al.  A CMB polarization primer , 1997 .

[24]  L. Toffolatti,et al.  Planck early results. III. First assessment of the Low Frequency , 2011, 1101.2038.

[25]  Edward J. Wollack,et al.  NINE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: FINAL MAPS AND RESULTS , 2012, 1212.5225.

[26]  Jonas Zmuidzinas,et al.  Superconducting Microresonators: Physics and Applications , 2012 .

[27]  R. B. Barreiro,et al.  Planck early results. IV. First assessment of the High Frequency Instrument in-flight performance , 2011, 1101.2039.