A Bayesian view of assessing uncertainty and comparing expert opinion

[1]  Glenn Shafer,et al.  A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.

[2]  David Lindley,et al.  The Probability Approach to the Treatment of Uncertainty in Artificial Intelligence and Expert Systems , 1987 .

[3]  Glenn Shafer,et al.  Probability Judgment in Artificial Intelligence and Expert Systems , 1987 .

[4]  M. Degroot,et al.  Comparing Probability Forecasters: Basic Binary Concepts and Multivariate Extensions , 1983 .

[5]  Stephen E. Fienberg,et al.  The Comparison and Evaluation of Forecasters. , 1983 .

[6]  L. Zadeh The role of fuzzy logic in the management of uncertainty in expert systems , 1983 .

[7]  M. Degroot,et al.  Assessing Probability Assessors: Calibration and Refinement. , 1981 .

[8]  I. Olkin,et al.  Inequalities: Theory of Majorization and Its Applications , 1980 .

[9]  Lotfi A. Zadeh,et al.  Fuzzy sets and information granularity , 1996 .

[10]  Peter A. Morris,et al.  Combining Expert Judgments: A Bayesian Approach , 1977 .

[11]  Robert L. Winkler Rewarding Expertise in Probability Assessment , 1977 .

[12]  Peter A. Morris,et al.  Decision Analysis Expert Use , 1974 .

[13]  L. J. Savage Elicitation of Personal Probabilities and Expectations , 1971 .

[14]  Joseph L. Gastwirth,et al.  A General Definition of the Lorenz Curve , 1971 .

[15]  S. Holstein,et al.  Assessment and evaluation of subjective probability distributions , 1970 .

[16]  Steven Vajda,et al.  Theory of games and statistical decisions , 1955 .

[17]  L. J. Savage,et al.  The Foundations of Statistics , 1955 .

[18]  D. Blackwell Equivalent Comparisons of Experiments , 1953 .

[19]  D. Blackwell Comparison of Experiments , 1951 .

[20]  G. Brier VERIFICATION OF FORECASTS EXPRESSED IN TERMS OF PROBABILITY , 1950 .