Cerebellar connectome alterations and associated genetic signatures in multiple sclerosis and neuromyelitis optica spectrum disorder

[1]  F. Barkhof,et al.  Brain structural alterations in MOG antibody diseases: a comparative study with AQP4 seropositive NMOSD and MS , 2021, Journal of Neurology, Neurosurgery, and Psychiatry.

[2]  M. Schoonheim,et al.  The cerebellum and its network: Disrupted static and dynamic functional connectivity patterns and cognitive impairment in multiple sclerosis , 2021, Multiple sclerosis.

[3]  Q. Zou,et al.  Surface-based single-subject morphological brain networks: Effects of morphological index, brain parcellation and similarity measure, sample size-varying stability and test-retest reliability , 2021, NeuroImage.

[4]  Rodrigo M. Braga,et al.  The detailed organization of the human cerebellum estimated by intrinsic functional connectivity within the individual , 2020, bioRxiv.

[5]  M. Sereno,et al.  The human cerebellum has almost 80% of the surface area of the neocortex , 2020, Proceedings of the National Academy of Sciences.

[6]  Ben D. Fulcher,et al.  Genetic influences on hub connectivity of the human connectome , 2020, Nature Communications.

[7]  V. Lennon,et al.  Astrocyte-microglia interaction drives evolving neuromyelitis optica lesion. , 2020, The Journal of clinical investigation.

[8]  John D. E. Gabrieli,et al.  Evidence for Hierarchical Cognitive Control in the Human Cerebellum , 2020, Current Biology.

[9]  Yongmei Li,et al.  Functional Connectivity Alterations in Neuromyelitis Optica Spectrum Disorder , 2019, Clinical Neuroradiology.

[10]  Catherine J. Stoodley,et al.  The Theory and Neuroscience of Cerebellar Cognition. , 2019, Annual review of neuroscience.

[11]  W. Qin,et al.  Normal-Appearing Cerebellar Damage in Neuromyelitis Optica Spectrum Disorder , 2019, American Journal of Neuroradiology.

[12]  E. D’Angelo,et al.  Default Mode Network Structural Integrity and Cerebellar Connectivity Predict Information Processing Speed Deficit in Multiple Sclerosis , 2019, Front. Cell. Neurosci..

[13]  Evan M. Gordon,et al.  Spatial and Temporal Organization of the Individual Human Cerebellum , 2018, Neuron.

[14]  Kuncheng Li,et al.  Multimodal characterization of gray matter alterations in neuromyelitis optica , 2018, Multiple sclerosis.

[15]  Satrajit S. Ghosh,et al.  Functional gradients of the cerebellum , 2018, bioRxiv.

[16]  Ben D. Fulcher,et al.  A practical guide to linking brain-wide gene expression and neuroimaging data , 2018, NeuroImage.

[17]  D. Langdon,et al.  A Systematic Review and Meta-Analysis of the Brief Cognitive Assessment for Multiple Sclerosis (BICAMS) , 2018, Neurology and Therapy.

[18]  N. Dosenbach,et al.  The frontoparietal network: function, electrophysiology, and importance of individual precision mapping , 2018, Dialogues in clinical neuroscience.

[19]  Peter B. Jones,et al.  Morphometric Similarity Networks Detect Microscale Cortical Organization and Predict Inter-Individual Cognitive Variation , 2017, Neuron.

[20]  Carlo Pozzilli,et al.  Role of Cerebellar Dentate Functional Connectivity in Balance Deficits in Patients with Multiple Sclerosis. , 2017, Radiology.

[21]  David H. Miller,et al.  Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria , 2017, The Lancet Neurology.

[22]  Vinzenz Fleischer,et al.  Graph Theoretical Framework of Brain Networks in Multiple Sclerosis: A Review of Concepts , 2017, Neuroscience.

[23]  Yuehai Shen,et al.  Cognitive dysfunction in adult patients with neuromyelitis optica: a systematic review and meta-analysis , 2017, Journal of Neurology.

[24]  Russell T. Shinohara,et al.  Harmonization of cortical thickness measurements across scanners and sites , 2017, NeuroImage.

[25]  Evan M. Gordon,et al.  Local-Global Parcellation of the Human Cerebral Cortex From Intrinsic Functional Connectivity MRI , 2017, bioRxiv.

[26]  F. Barkhof,et al.  Differential brainstem atrophy patterns in multiple sclerosis and neuromyelitis optica spectrum disorders , 2018, Journal of magnetic resonance imaging : JMRI.

[27]  H. Hahn,et al.  Cervical cord and ventricle affection in neuromyelitis optica , 2017, Acta neurologica Scandinavica.

[28]  M. Mallar Chakravarty,et al.  CERES: A new cerebellum lobule segmentation method , 2017, NeuroImage.

[29]  T. Chitnis,et al.  Immunology of neuromyelitis optica during pregnancy , 2016, Neurology: Neuroimmunology & Neuroinflammation.

[30]  Peter B. Jones,et al.  Gene transcription profiles associated with inter-modular hubs and connection distance in human functional magnetic resonance imaging networks , 2016, Philosophical Transactions of the Royal Society B: Biological Sciences.

[31]  Jinhui Wang,et al.  Single‐subject morphological brain networks: connectivity mapping, topological characterization and test–retest reliability , 2016, Brain and behavior.

[32]  S. Waxman,et al.  The cerebellar channelopathy of multiple sclerosis , 2016, Neurology.

[33]  Simon B. Eickhoff,et al.  A cross-modal, cross-species comparison of connectivity measures in the primate brain , 2016, NeuroImage.

[34]  Joseph M. Nour,et al.  Neuroimaging in Aicardi-Goutières syndrome , 2016, Neurology.

[35]  D. Centonze,et al.  Synaptopathy connects inflammation and neurodegeneration in multiple sclerosis , 2015, Nature Reviews Neurology.

[36]  A. Traboulsee,et al.  International consensus diagnostic criteria for neuromyelitis optica spectrum disorders , 2015, Neurology.

[37]  Yong He,et al.  GRETNA: a graph theoretical network analysis toolbox for imaging connectomics , 2015, Front. Hum. Neurosci..

[38]  Pierrick Coupé,et al.  volBrain: An Online MRI Brain Volumetry System , 2015, Front. Neuroinform..

[39]  L. Kappos,et al.  The role of cerebellar abnormalities in neuromyelitis optica – a comparison with multiple sclerosis and healthy controls , 2015, Multiple sclerosis.

[40]  Jacqueline Palace,et al.  Demographic and clinical features of neuromyelitis optica: A review , 2015, Multiple sclerosis.

[41]  Menno M. Schoonheim,et al.  Network Collapse and Cognitive Impairment in Multiple Sclerosis , 2015, Front. Neurol..

[42]  J. Sandkühler,et al.  Pain in neuromyelitis optica—prevalence, pathogenesis and therapy , 2014, Nature Reviews Neurology.

[43]  J. Vogelstein,et al.  Accurate prediction of AD patients using cortical thickness networks , 2013, Machine Vision and Applications.

[44]  Allan R. Jones,et al.  An anatomically comprehensive atlas of the adult human brain transcriptome , 2012, Nature.

[45]  Su-Hyun Kim,et al.  Does interferon beta treatment exacerbate neuromyelitis optica spectrum disorder? , 2012, Multiple sclerosis.

[46]  Dinggang Shen,et al.  Hierarchical Anatomical Brain Networks for MCI Prediction: Revisiting Volumetric Measures , 2011, PloS one.

[47]  Marisa O. Hollinshead,et al.  The organization of the human cerebral cortex estimated by intrinsic functional connectivity. , 2011, Journal of neurophysiology.

[48]  Michael Weiner,et al.  Network-level analysis of cortical thickness of the epileptic brain , 2010, NeuroImage.

[49]  Catherine J. Stoodley,et al.  Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing , 2010, Cortex.

[50]  Chiara Romualdi,et al.  Magnetic resonance evidence of cerebellar cortical pathology in multiple sclerosis , 2009, Journal of Neurology, Neurosurgery & Psychiatry.

[51]  Jukka-Pekka Onnela,et al.  Community Structure in Time-Dependent, Multiscale, and Multiplex Networks , 2009, Science.

[52]  Israel Steinfeld,et al.  BMC Bioinformatics BioMed Central , 2008 .

[53]  D. Schutter,et al.  The role of the cerebellum in the pathophysiology and treatment of neuropsychiatric disorders: A review , 2008, Brain Research Reviews.

[54]  R. Zivadinov,et al.  I nterferon beta-1a slows progression of brain atrophy in relapsing-remitting multiple sclerosis predominantly by reducing gray matter atrophy , 2007, Multiple sclerosis.

[55]  Y. Itoyama,et al.  Establishment of a new sensitive assay for anti-human aquaporin-4 antibody in neuromyelitis optica. , 2006, The Tohoku journal of experimental medicine.

[56]  A. Vincent,et al.  Autoimmune Channelopathies and Related Neurological Disorders , 2006, Neuron.

[57]  B. Pakkenberg,et al.  A quantitative study of the human cerebellum with unbiased stereological techniques , 1992, The Journal of comparative neurology.

[58]  A. L. Leiner,et al.  The human cerebro-cerebellar system: its computing, cognitive, and language skills , 1991, Behavioural Brain Research.

[59]  A. L. Leiner,et al.  Does the cerebellum contribute to mental skills? , 1986, Behavioral neuroscience.

[60]  K. Sasaki,et al.  Electrophysiological studies of the projections from the parietal association area to the cerebellar cortex , 1975, Experimental Brain Research.

[61]  Z. Yao,et al.  Novel Cortical Thickness Pattern for Accurate Detection of Alzheimer's Disease. , 2015, Journal of Alzheimer's disease : JAD.

[62]  Christopher L. Asplund,et al.  The organization of the human cerebellum estimated by intrinsic functional connectivity. , 2011, Journal of neurophysiology.

[63]  Marina Meila,et al.  Comparing Clusterings by the Variation of Information , 2003, COLT.