High-Q integrated photonic microresonators on 3C-SiC-on-insulator (SiCOI) platform.

We report a high-quality 3C-silicon carbide (SiC)-on-insulator (SiCOI) integrated photonic material platform formed by wafer bonding of crystalline 3C-SiC to a silicon oxide (SiO2)-on-silicon (Si) substrate. This material platform enables to develop integrated photonic devices in SiC without the need for undercutting the Si substrate, in contrast to the structures formed on conventional 3C-SiC-on-Si platforms. In addition, we show a unique process in the SiCOI platform for minimizing the effect of lattice mismatch during the growth of SiC on Si through polishing after bonding. This results in a high-quality SiCOI platform that enables record high Qs of 142,000 in 40 µm radius SiC microring resonators. The resulting SiCOI platform has a great potential for a wide range of applications in integrated optics, including nonlinear optical devices, quantum optical devices, and high-power optical devices.

[1]  A. Politi,et al.  Linear integrated optics in 3C silicon carbide. , 2017, Optics express.

[2]  D. Nilsson,et al.  3C-SiC carbonization optimization and void reduction on misoriented Si substrates: from a research reactor to a production scale reactor , 2016 .

[3]  Michal Lipson,et al.  Breaking the Loss Limitation of On-chip High-confinement Resonators , 2016, 1609.08699.

[4]  M. Calicchio,et al.  Defect structure and strain reduction of 3C-SiC/Si layers obtained with the use of a buffer layer and methyltrichlorosilane addition , 2016 .

[5]  Ali Adibi,et al.  High-quality silicon on silicon nitride integrated optical platform with an octave-spanning adiabatic interlayer coupler. , 2015, Optics express.

[6]  M. Lipson,et al.  Optical nonlinearities in high-confinement silicon carbide waveguides. , 2015, Optics letters.

[7]  T. Ohshima,et al.  Single-photon emitting diode in silicon carbide , 2015, Nature Communications.

[8]  Jonathan Y. Lee,et al.  Optical Kerr nonlinearity in a high-Q silicon carbide microresonator. , 2014, Optics express.

[9]  A. Atabaki,et al.  Double-Layer Crystalline Silicon on Insulator Material Platform for Integrated Photonic Applications , 2014, IEEE Photonics Journal.

[10]  Jonathan Y. Lee,et al.  High Q silicon carbide microdisk resonator , 2014 .

[11]  Igor Aharonovich,et al.  High quality SiC microdisk resonators fabricated from monolithic epilayer wafers , 2014 .

[12]  G. Ferro,et al.  Photonic crystal cavities in cubic (3C) polytype silicon carbide films. , 2013, Optics express.

[13]  M. Lipson,et al.  High Q SiC microresonators. , 2013, Optics Express.

[14]  T. Ohshima,et al.  A silicon carbide room-temperature single-photon source. , 2013, Nature materials.

[15]  Jonathan Y. Lee,et al.  Silicon carbide microdisk resonator. , 2013, Optics letters.

[16]  A. Politi,et al.  Polytype control of spin qubits in silicon carbide , 2013, Nature Communications.

[17]  Yoshinori Tanaka,et al.  Suppression of multiple photon absorption in a SiC photonic crystal nanocavity operating at 1.55 μm. , 2012, Optics express.

[18]  Shota Yamada,et al.  Silicon carbide-based photonic crystal nanocavities for ultra-broadband operation from infrared to visible wavelengths , 2011 .

[19]  Bob B. Buckley,et al.  Room temperature coherent control of defect spin qubits in silicon carbide , 2011, Nature.

[20]  T. Asano,et al.  Experimental investigation of thermo-optic effects in SiC and Si photonic crystal nanocavities. , 2011, Optics letters.

[21]  T. Asano,et al.  Demonstration of two-dimensional photonic crystals based on silicon carbide. , 2011, Optics express.

[22]  Steven G. Johnson,et al.  Enhanced nonlinear optics in photonic-crystal microcavities. , 2007, Optics express.

[23]  T. Kippenberg,et al.  Optical frequency comb generation from a monolithic microresonator , 2007, Nature.

[24]  H. Mantooth,et al.  Power Conversion With SiC Devices at Extremely High Ambient Temperatures , 2007, IEEE Transactions on Power Electronics.

[25]  D. Zhuang,et al.  Wet etching of GaN, AlN, and SiC : a review , 2005 .

[26]  A. Evans,et al.  β-SiC-on insulator waveguide structures for modulators and sensor systems , 2000 .

[27]  Mehran Mehregany,et al.  Fabrication of low defect density 3C-SiC on SiO2 structures using wafer bonding techniques , 1998 .

[28]  M. Bruel,et al.  Silicon carbide on insulator formation by the Smart-Cut® process , 1997 .

[29]  M. Bhatnagar,et al.  Silicon carbide high-power devices , 1996 .

[30]  H. Morkoç,et al.  Large‐band‐gap SiC, III‐V nitride, and II‐VI ZnSe‐based semiconductor device technologies , 1994 .

[31]  B. J. Baliga,et al.  Comparison of 6H-SiC, 3C-SiC, and Si for power devices , 1993 .

[32]  Payne,et al.  Nonlinear refractive index of optical crystals. , 1989, Physical review. B, Condensed matter.

[33]  C. Fung,et al.  Thermal oxidation of 3C silicon carbide single‐crystal layers on silicon , 1984 .

[34]  Marc A. Finet,et al.  Femtosecond laser damage threshold and nonlinear characterization in bulk transparent SiC materials , 2008, SPIE LASE.

[35]  G. Chung Wafer bonding characteristics for 3C-SiC-on-insulator structures using PECVD oxide , 2004 .

[36]  F. Bechstedt,et al.  Optical and loss spectra of SiC polytypes from ab initio calculations , 1997 .

[37]  A. Steckl,et al.  Silicon Carbide Wafer Bonding , 1995 .