Extra highways for proton diffusion in TiO2@MIL-101-Cr/Nafion composite membranes with high single-cell performance

[1]  Ya-Ru Liu,et al.  Recent Advances in Mofs-Based Proton Exchange Membranes , 2022, SSRN Electronic Journal.

[2]  P. Fang,et al.  High-performance fuel cells using Nafion composite membranes with alignment of sulfonated graphene oxides induced by a strong magnetic field , 2022, Journal of Membrane Science.

[3]  Haolin Tang,et al.  Alkali-free quaternized polybenzimidazole membranes with high phosphoric acid retention ability for high temperature proton exchange membrane fuel cells , 2022, Journal of Membrane Science.

[4]  Duo Pan,et al.  Revisiting Nafion membranes by introducing ammoniated polymer with norbornene to improve fuel cell performance , 2021 .

[5]  Sang Moon Kim,et al.  Patterned mesoporous TiO2 microplates embedded in Nafion® membrane for high temperature/low relative humidity polymer electrolyte membrane fuel cell operation , 2021 .

[6]  S. Shvartsman,et al.  Evaluating the Arrhenius equation for developmental processes , 2021, Molecular systems biology.

[7]  Yongjin Lee,et al.  Coating the Right Polymer: Achieving Ideal Metal–Organic Framework Particle Dispersibility in Polymer Matrixes Using a Coordinative Crosslinking Surface Modification Method , 2021, Angewandte Chemie.

[8]  Xiaoling Ding,et al.  Proton Conduction of Nafion Hybrid Membranes Promoted by NH3-Modified Zn-MOF with Host-Guest Collaborative Hydrogen Bonds for H2/O2 Fuel Cell Applications. , 2021, ACS applied materials & interfaces.

[9]  P. Fang,et al.  Magnetic aligned sulfonated carbon nanotube/Nafion composite membranes with anisotropic mechanical and proton conductive properties , 2021, Journal of Materials Science.

[10]  Pengfei Yang,et al.  Weakly Humidity‐Dependent Proton‐Conducting COF Membranes , 2020, Advanced materials.

[11]  Hao Zhang,et al.  Anatase TiO2@MIL-101(Cr) nanocomposite for photocatalytic degradation of bisphenol A , 2020 .

[12]  Fukun Bi,et al.  Synergistic effects of octahedral TiO2-MIL-101(Cr) with two heterojunctions for enhancing visible-light photocatalytic degradation of liquid tetracycline and gaseous toluene. , 2020, Journal of colloid and interface science.

[13]  H. Kitagawa,et al.  Proton Transport in Metal-Organic Frameworks. , 2020, Chemical reviews.

[14]  Wan E Wu,et al.  Efficient removal of methyl orange by a flower-like TiO2/MIL-101(Cr) composite nanomaterial. , 2020, Dalton transactions.

[15]  P. Fang,et al.  Comparative studies of methyl orange adsorption in various metal-organic frameworks by nitrogen adsorption and positron annihilation lifetime spectroscopy , 2020 .

[16]  G. He,et al.  Coaxial electrospun sulfonated poly (ether ether ketone) proton exchange membrane for conductivity-strength balance , 2020 .

[17]  Libing Qian,et al.  Free volume, gas permeation, and proton conductivity in MIL-101-SO3H/Nafion composite membranes. , 2019, Physical chemistry chemical physics : PCCP.

[18]  M. Karimi,et al.  Recent approaches to improve Nafion performance for fuel cell applications: A review , 2019, International Journal of Hydrogen Energy.

[19]  B. Bruggen,et al.  SIFSIX-3-Zn/PIM-1 mixed matrix membranes with enhanced permeability for propylene/propane separation , 2019, Journal of Membrane Science.

[20]  M. Abdel-Hamed,et al.  Characterization and evaluation of Nafion HP JP as proton exchange membrane: transport properties, nanostructure, morphology, and cell performance , 2019, Journal of Solid State Electrochemistry.

[21]  Jin-dun Liu,et al.  Porous Nafion nanofiber composite membrane with vertical pathways for efficient through-plane proton conduction , 2019, Journal of Membrane Science.

[22]  P. Fang,et al.  Dependence of dye molecules adsorption behaviors on pore characteristics of mesostructured MOFs fabricated by surfactant template. , 2019, ACS applied materials & interfaces.

[23]  M. Vinothkannan,et al.  Potential Bifunctional Filler (CeO2–ACNTs) for Nafion Matrix toward Extended Electrochemical Power Density and Durability in Proton-Exchange Membrane Fuel Cells Operating at Reduced Relative Humidity , 2019, ACS Sustainable Chemistry & Engineering.

[24]  S. Panero,et al.  Polymer Electrolyte Membranes Based on Nafion and a Superacidic Inorganic Additive for Fuel Cell Applications , 2019, Polymers.

[25]  D. D. De Vos,et al.  Bipyridine-based UiO-67 as novel filler in mixed-matrix membranes for CO2-selective gas separation , 2019, Journal of Membrane Science.

[26]  Liang Wang,et al.  Regulation of the adsorption affinity of metal-organic framework MIL-101 via a TiO2 coating strategy for high capacity adsorption and efficient photocatalysis , 2018, Microporous and Mesoporous Materials.

[27]  P. Fang,et al.  Phase Separation and Development of Proton Transport Pathways in Metal Oxide Nanoparticle/Nafion Composite Membranes during Water Uptake , 2018 .

[28]  P. Fang,et al.  Enhancement in Proton Conductivity and Thermal Stability in Nafion Membranes Induced by Incorporation of Sulfonated Carbon Nanotubes. , 2018, ACS applied materials & interfaces.

[29]  S. Qiao,et al.  Molecular‐Level Hybridization of Nafion with Quantum Dots for Highly Enhanced Proton Conduction , 2018, Advanced materials.

[30]  M. Dickmann,et al.  Free Volume of PVA/SSA Proton Exchange Membrane Studied by Positron Annihilation Lifetime Spectroscopy , 2017 .

[31]  Peiyi Wu,et al.  Proton Conductivity of Proton Exchange Membrane Synergistically Promoted by Different Functionalized Metal-Organic Frameworks. , 2017, ACS applied materials & interfaces.

[32]  P. Fang,et al.  Positron annihilation characteristics, water uptake and proton conductivity of composite Nafion membranes. , 2017, Physical chemistry chemical physics : PCCP.

[33]  A. Weber,et al.  New Insights into Perfluorinated Sulfonic-Acid Ionomers. , 2017, Chemical reviews.

[34]  H. Mohamed,et al.  Tracking free volume changes in bisphenol-a based polycarbonate sheets after treatment with liquid acetone , 2017, Journal of Polymer Research.

[35]  Li Cao,et al.  Enhanced proton conductivity of Nafion composite membrane by incorporating phosphoric acid-loaded covalent organic framework , 2016 .

[36]  Hasmukh A. Patel,et al.  Superacidity in Nafion/MOF Hybrid Membranes Retains Water at Low Humidity to Enhance Proton Conduction for Fuel Cells. , 2016, ACS applied materials & interfaces.

[37]  R. Kannan,et al.  Facile enhancement in proton conductivity of sulfonated poly (ether ether ketone) using functionalized graphene oxide—synthesis, characterization, and application towards proton exchange membrane fuel cells , 2016, Colloid and Polymer Science.

[38]  Seth M. Cohen,et al.  In Situ Modification of Metal-Organic Frameworks in Mixed-Matrix Membranes. , 2015, Angewandte Chemie.

[39]  H. Mohamed,et al.  Per-fluorinated sulfonic acid/PTFE copolymer studied by positron annihilation lifetime and gas permeation techniques , 2015 .

[40]  Ziqi Wang,et al.  Cr2O3@TiO2 yolk/shell octahedrons derived from a metal–organic framework for high-performance lithium-ion batteries , 2015 .

[41]  S. Japip,et al.  Highly permeable zeolitic imidazolate framework (ZIF)-71 nano-particles enhanced polyimide membranes for gas separation , 2014 .

[42]  G. He,et al.  Enhanced proton conductivity of proton exchange membranes by incorporating sulfonated metal-organic frameworks , 2014 .

[43]  G. Shimizu,et al.  MOFs as proton conductors--challenges and opportunities. , 2014, Chemical Society reviews.

[44]  G. He,et al.  Enhanced proton conductivity of Nafion hybrid membrane under different humidities by incorporating metal-organic frameworks with high phytic acid loading. , 2014, ACS applied materials & interfaces.

[45]  K. Feng,et al.  Selective growth of MoS2 for proton exchange membranes with extremely high selectivity. , 2013, ACS applied materials & interfaces.

[46]  Gang Xu,et al.  Superprotonic conductivity in a highly oriented crystalline metal-organic framework nanofilm. , 2013, Journal of the American Chemical Society.

[47]  P. Jannasch,et al.  Segmented tetrasulfonated copoly(arylene ether sulfone)s: improving proton transport properties by extending the ionic sequence. , 2013, ChemSusChem.

[48]  Liang Wu,et al.  A novel route for preparing highly proton conductive membrane materials with metal-organic frameworks. , 2013, Chemical communications.

[49]  D. Dybtsev,et al.  Imparting high proton conductivity to a metal-organic framework material by controlled acid impregnation. , 2012, Journal of the American Chemical Society.

[50]  R. Banerjee,et al.  Self-assembled one dimensional functionalized metal-organic nanotubes (MONTs) for proton conduction. , 2012, Chemical communications.

[51]  Pan Mu,et al.  Self-assembly of durable Nafion/TiO2 nanowire electrolyte membranes for elevated-temperature PEM fuel cells , 2011 .

[52]  Junsheng Li,et al.  Durable and high performance Nafion membrane prepared through high-temperature annealing methodology , 2010 .

[53]  G. Zhong,et al.  Synthesis and characterization of Nafion/cross-linked PVP semi-interpenetrating polymer network membrane for direct methanol fuel cell , 2010 .

[54]  Hiroyuki Uchida,et al.  Proton-conductive aromatic ionomers containing highly sulfonated blocks for high-temperature-operable fuel cells. , 2010, Angewandte Chemie.

[55]  H. Mohamed,et al.  Free volume and permeabilities of O2 and H2 in Nafion membranes for polymer electrolyte fuel cells , 2008 .

[56]  M. Paluch,et al.  Effect of free volume and temperature on the structural relaxation in polymethylphenylsiloxane: a positron lifetime and pressure-volume-temperature study. , 2007, The Journal of chemical physics.

[57]  Gérard Férey,et al.  Metal-organic frameworks as efficient materials for drug delivery. , 2006, Angewandte Chemie.

[58]  J. Runt,et al.  Dynamics of Sulfonated Polystyrene Copolymers Using Broadband Dielectric Spectroscopy , 2006 .

[59]  Yi-Ming Sun,et al.  Sulfonated poly(phthalazinone ether ketone) for proton exchange membranes in direct methanol fuel cells , 2005 .

[60]  C. Serre,et al.  A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area , 2005, Science.

[61]  E. Chalkova,et al.  Effect of TiO2 Surface Properties on Performance of Nafion-Based Composite Membranes in High Temperature and Low Relative Humidity PEM Fuel Cells , 2005 .

[62]  Antonino S. Aricò,et al.  Nafion–TiO2 composite DMFC membranes: physico-chemical properties of the filler versus electrochemical performance , 2005 .

[63]  R. Mezzenga,et al.  Water in glassy carbohydrates: opening it up at the nanolevel , 2004 .

[64]  K. Friedrich,et al.  Modified Nafion®-based membranes for use in direct methanol fuel cells , 2002 .

[65]  A. J. Hill,et al.  Ultrapermeable, Reverse-Selective Nanocomposite Membranes , 2002, Science.

[66]  M. J. Hill,et al.  Free‐volume variation in polyethylenes of different crystallinities: Positron lifetime, density, and X‐ray studies , 2002 .

[67]  J. Kansy Microcomputer program for analysis of positron annihilation lifetime spectra , 1996 .

[68]  T. Kyu,et al.  Dynamic Mechanical Studies of Partially Ionized and Neutralized Nafion Polymers , 1983 .

[69]  John N. Sherwood,et al.  The temperature dependence of positron lifetimes in solid pivalic acid , 1981 .

[70]  S. J. Tao Positronium Annihilation in Molecular Substances , 1972 .