Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: Applications to entangling remote spins via a single photon

We propose a quantum nondemolition method---a giant optical Faraday rotation near the resonant regime to measure a single-electron spin in a quantum dot inside a microcavity where a negatively charged exciton strongly couples to the cavity mode. Left-circularly and right-circularly polarized lights reflected from the cavity obtain different phase shifts due to cavity quantum electrodynamics and the optical spin selection rule. This yields giant and tunable Faraday rotation that can be easily detected experimentally. Based on this spin-detection technique, a deterministic photon-spin entangling gate and a scalable scheme to create remote spin entanglement via a single photon are proposed.

[1]  L. A. Coldren,et al.  Picosecond Coherent Optical Manipulation of a Single Electron Spin in a Quantum Dot , 2008, Science.

[2]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[3]  D. Matsukevich,et al.  Entanglement of single-atom quantum bits at a distance , 2007, Nature.

[4]  Christian Schneider,et al.  AlAs∕GaAs micropillar cavities with quality factors exceeding 150.000 , 2007 .

[5]  T. Ladd,et al.  Quantum computers based on electron spins controlled by ultrafast off-resonant single optical pulses. , 2006, Physical review letters.

[6]  A. Badolato,et al.  Observation of Faraday rotation from a single confined spin , 2006, quant-ph/0610110.

[7]  J. Eymery,et al.  Quantum Communication with Quantum Dot Spins , 2006, quant-ph/0609030.

[8]  Xiaodong Xu,et al.  Fast initialization of the spin state of an electron in a quantum dot in the Voigt configuration. , 2006, Physical review letters.

[9]  L A Coldren,et al.  Nondestructive Optical Measurements of a Single Electron Spin in a Quantum Dot , 2006, Science.

[10]  W. Munro,et al.  Hybrid quantum repeater based on dispersive CQED interactions between matter qubits and bright coherent light , 2006, quant-ph/0610154.

[11]  A. Shabaev,et al.  Mode Locking of Electron Spin Coherences in Singly Charged Quantum Dots , 2006, Science.

[12]  Khaled Karrai,et al.  Quantum-Dot Spin-State Preparation with Near-Unity Fidelity , 2006, Science.

[13]  D. Ritchie,et al.  Magnetic-field-induced reduction of the exciton polarization splitting in InAs quantum dots , 2006, quant-ph/0601199.

[14]  W. Munro,et al.  Hybrid quantum repeater using bright coherent light. , 2005, Physical review letters.

[15]  T. Spiller,et al.  Quantum computation by communication , 2005, quant-ph/0509202.

[16]  M. Lukin,et al.  Fault-tolerant quantum communication based on solid-state photon emitters. , 2004, Physical review letters.

[17]  A. Schliwa,et al.  Size-dependent fine-structure splitting in self-organized InAs/GaAs quantum dots. , 2005, Physical review letters.

[18]  H. Kimble,et al.  Measurement-induced entanglement for excitation stored in remote atomic ensembles , 2005, Nature.

[19]  Jacob M. Taylor,et al.  Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots , 2005, Science.

[20]  D. Awschalom,et al.  Teleportation of electronic many-qubit states encoded in the electron spin of quantum dots via single photons. , 2005, Physical review letters.

[21]  A Lemaître,et al.  Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity. , 2004, Physical review letters.

[22]  Ren-Bao Liu,et al.  Theory of control of the spin-photon interface for quantum networks. , 2004, Physical review letters.

[23]  G. Rupper,et al.  Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity , 2004, Nature.

[24]  V. Kulakovskii,et al.  Strong coupling in a single quantum dot–semiconductor microcavity system , 2004, Nature.

[25]  Dieter Schuh,et al.  Optically programmable electron spin memory using semiconductor quantum dots , 2004, Nature.

[26]  L. Vandersypen,et al.  Single-shot read-out of an individual electron spin in a quantum dot , 2004, Nature.

[27]  Dirk Reuter,et al.  Control of fine-structure splitting and biexciton binding in In x Ga 1 − x As quantum dots by annealing , 2004 .

[28]  C. Piermarocchi,et al.  Theory of quantum optical control of a single spin in a quantum dot , 2003, cond-mat/0301422.

[29]  A. Datta,et al.  Spin-based all-optical quantum computation with quantum dots: Understanding and suppressing decoherence , 2003, quant-ph/0304044.

[30]  G. Solomon,et al.  Available online at www.sciencedirect.com , 2000 .

[31]  C. Piermarocchi,et al.  Optical RKKY interaction between charged semiconductor quantum dots. , 2002, Physical review letters.

[32]  Costas Fotakis,et al.  LASERS, OPTICS, AND OPTOELECTRONICS 2865 Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities , 2001 .

[33]  D D Awschalom,et al.  Ultrafast Manipulation of Electron Spin Coherence , 2001, Science.

[34]  I. Chuang,et al.  Quantum Computation and Quantum Information: Bibliography , 2010 .

[35]  D. DiVincenzo,et al.  Quantum information processing using quantum dot spins and cavity QED , 1999, quant-ph/9904096.

[36]  D. R. Yakovlev,et al.  Optically detected magnetic resonance of excess electrons in type-I quantum wells with a low-density electron gas , 1998 .

[37]  D. DiVincenzo,et al.  Quantum computation with quantum dots , 1997, cond-mat/9701055.

[38]  Gilberto Medeiros-Ribeiro,et al.  Charged Excitons in Self-Assembled Semiconductor Quantum Dots , 1997 .