Inflammation and the Microcirculation

Abstract The microcirculation is highly responsive to, and a vital participant in, the inflammatory response. All segments of the microvasculature (arterioles, capillaries, and venules) exhibit characteristic phenotypic changes during inflammation that appear to be directed toward enhancing the delivery of inflammatory cells to the injured/infected tissue, isolating the region from healthy tissue and the systemic circulation, and setting the stage for tissue repair and regeneration. The best characterized responses of the microcirculation to inflammation include impaired vasomotor function, reduced capillary perfusion, adhesion of leukocytes and platelets, activation of the coagulation cascade, and enhanced thrombosis, increased vascular permeability, and an increase in the rate of proliferation of blood and lymphatic vessels. A variety of cells that normally circulate in blood (leukocytes, platelets) or reside within the vessel wall (endothelial cells, pericytes) or in the perivascular space (mast cells,...

[1]  D. Granger,et al.  Endothelial cell P-selectin mediates a proinflammatory and prothrombogenic phenotype in cerebral venules of sickle cell transgenic mice. , 2004, American journal of physiology. Heart and circulatory physiology.

[2]  A. Mulivor,et al.  Inhibition of Glycan Shedding and Leukocyte‐Endothelial Adhesion in Postcapillary Venules by Suppression of Matrixmetalloprotease Activity with Doxycycline , 2009, Microcirculation.

[3]  S. D. House,et al.  Effects of hydrodynamics and leukocyte-endothelium specificity on leukocyte-endothelium interactions. , 1992, Microvascular research.

[4]  A. Gasbarrini,et al.  Activated platelets are the source of elevated levels of soluble CD40 ligand in the circulation of inflammatory bowel disease patients , 2003, Gut.

[5]  B. Furie,et al.  Platelet-leukocyte-endothelial cell interaction on the blood vessel wall. , 1997, Seminars in hematology.

[6]  M. Kluger,et al.  Vascular endothelial cell adhesion and signaling during leukocyte recruitment. , 2004, Advances in dermatology.

[7]  S. Weiss,et al.  Oxidative autoactivation of latent collagenase by human neutrophils. , 1985, Science.

[8]  S. Weiss,et al.  Collagenolytic metalloenzymes of the human neutrophil. Characteristics, regulation and potential function in vivo. , 1986, Biochemical pharmacology.

[9]  P. Vanhoutte,et al.  Nitric oxide the gatekeeper of endothelial vasomotor control. , 2008, Frontiers in bioscience : a journal and virtual library.

[10]  H. Langer,et al.  Leukocyte – endothelial interactions in inflammation , 2009, Journal of cellular and molecular medicine.

[11]  R. Cummings,et al.  P-selectin glycoprotein ligand-1 is broadly expressed in cells of myeloid, lymphoid, and dendritic lineage and in some nonhematopoietic cells. , 1996, Blood.

[12]  B. Cronstein,et al.  Methotrexate inhibits neutrophil function by stimulating adenosine release from connective tissue cells. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[13]  M. Grisham,et al.  Modulation of ischemia/reperfusion-induced microvascular dysfunction by nitric oxide. , 1994, Circulation research.

[14]  D. Lefer,et al.  Modulation of leukocyte-endothelial interactions by reactive metabolites of oxygen and nitrogen: relevance to ischemic heart disease. , 1998, Free radical biology & medicine.

[15]  L. Hultén,et al.  Regional intestinal blood flow in ulcerative colitis and Crohn's disease. , 1977, Gastroenterology.

[16]  Randy H. Kardon,et al.  Tissues and Organs: A Text-Atlas of Scanning Electron Microscopy , 1979 .

[17]  S. Bolling,et al.  Pattern of injury and the role of neutrophils in reperfusion injury of rat lung. , 1995, The Journal of surgical research.

[18]  Juliette Martin,et al.  Platelet-leukocyte aggregates and derived microparticles in inflammation, vascular remodelling and thrombosis. , 2006, Frontiers in bioscience : a journal and virtual library.

[19]  P. Kubes,et al.  The Physiology of Leukocyte Recruitment: An In Vivo Perspective , 2008, The Journal of Immunology.

[20]  J. Giddings,et al.  Effects of NO-Donors on Thrombus Formation and Microcirculation in Cerebral Vessels of the Rat , 1996, Thrombosis and Haemostasis.

[21]  P. Holzer,et al.  Neurogenic vasodilatation and plasma leakage in the skin. , 1998, General pharmacology.

[22]  M. Karkkainen,et al.  Lymphatic vasculature: development, molecular regulation and role in tumor metastasis and inflammation. , 2004, Trends in immunology.

[23]  P. Hjemdahl,et al.  Platelet-Leukocyte Cross Talk in Whole Blood , 2000, Arteriosclerosis, thrombosis, and vascular biology.

[24]  S. Nagueh,et al.  Avoiding Papillary Muscle Infarction With Myocardial Contrast Echocardiographic Guidance of Nonsurgical Septal Reduction Therapy for Hypertrophic Obstructive Cardiomyopathy , 2004 .

[25]  J. Panés,et al.  Leukocyte-endothelial cell interactions: molecular mechanisms and implications in gastrointestinal disease. , 1998, Gastroenterology.

[26]  M. Gerritsen,et al.  Cytokine-induced VCAM-1 and ICAM-1 expression in different organs of the mouse. , 1997, Journal of immunology.

[27]  D. Stern,et al.  Modulation of endothelial cell hemostatic properties by tumor necrosis factor , 1986, The Journal of experimental medicine.

[28]  W. Chilian Coronary microcirculation in health and disease. Summary of an NHLBI workshop. , 1997, Circulation.

[29]  P. Puig-Parellada,et al.  Oxygen-free radicals and nitric oxide are involved in the thrombus growth produced by iontophoresis of ADP. , 1998, Pharmacological research.

[30]  D. Granger,et al.  Adipose tissue: A motor for the inflammation associated with obesity , 2009, IUBMB life.

[31]  P. Johnson Overview of the Microcirculation , 2008 .

[32]  Stephen J Galli,et al.  New developments in mast cell biology , 2008, Nature Immunology.

[33]  D. Granger,et al.  Hypoxia/reoxygenation increases the permeability of endothelial cell monolayers: role of oxygen radicals. , 1990, Free radical biology & medicine.

[34]  Y. Shoenfeld,et al.  Systemic Thromboembolism in Inflammatory Bowel Disease: Mechanisms and Clinical Applications , 2005, Annals of the New York Academy of Sciences.

[35]  E. Verrier The vascular endothelium: friend or foe? , 1993, The Annals of thoracic surgery.

[36]  P. Ganz,et al.  Role of Endothelial Dysfunction in Atherosclerosis , 2004, Circulation.

[37]  G. Majno Chronic inflammation: links with angiogenesis and wound healing. , 1998, The American journal of pathology.

[38]  J. Heffner,et al.  Washed human platelets prevent ischemia-reperfusion edema in isolated rabbit lungs. , 1991, Journal of applied physiology.

[39]  Melinda Fitzgerald,et al.  Immunol. Cell Biol. , 1995 .

[40]  K. Stokes,et al.  Molecular determinants of the prothrombogenic phenotype assumed by inflamed colonic venules. , 2005, American journal of physiology. Gastrointestinal and liver physiology.

[41]  L. Grant The Sticking and Emigration of White Blood Cells in Inflammation , 1965 .

[42]  Cuihua Zhang The role of inflammatory cytokines in endothelial dysfunction , 2008, Basic research in cardiology.

[43]  M. Gerritsen Functional heterogeneity of vascular endothelial cells. , 1987, Biochemical pharmacology.

[44]  A. P. Shepherd,et al.  Intrinsic microvascular control of tissue oxygen delivery. , 1973, Microvascular research.

[45]  D. Granger,et al.  Thrombin mediates the extraintestinal thrombosis associated with experimental colitis. , 2008, American journal of physiology. Gastrointestinal and liver physiology.

[46]  P. Kubes,et al.  Antithrombin III prevents and rapidly reverses leukocyte recruitment in ischemia/reperfusion. , 1997, Circulation.

[47]  E. Kouroumalis,et al.  Role of angiogenesis in inflammatory bowel disease , 2006, Inflammatory bowel diseases.

[48]  D. Granger,et al.  Superoxide mediates endotoxin-induced platelet-endothelial cell adhesion in intestinal venules. , 2003, American journal of physiology. Heart and circulatory physiology.

[49]  K. Ley History of Inflammation Research , 2001 .

[50]  R. Korthuis,et al.  Leukocyte adhesion, edema, and development of postischemic capillary no-reflow. , 1994, The American journal of physiology.

[51]  D. Friedman,et al.  CD39 and control of cellular immune responses , 2007, Purinergic Signalling.

[52]  A. Dvorak,et al.  The Vesiculo–Vacuolar Organelle (VVO): A New Endothelial Cell Permeability Organelle , 2001, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[53]  M. Webberley,et al.  Thromboembolism in inflammatory bowel disease: role of platelets. , 1993, Gut.

[54]  Paul M Ridker,et al.  Inflammation in atherosclerosis: from pathophysiology to practice. , 2009, Journal of the American College of Cardiology.

[55]  C. Smith,et al.  Mouse Cremaster Venules are Predisposed to Light/Dye‐Induced Thrombosis Independent of Wall Shear Rate, CD18, ICAM‐1, or P‐Selectin , 2004, Microcirculation.

[56]  F. Zijlstra,et al.  Intestinal Blood Flow in Murine Colitis Induced with Dextran Sulfate Sodium , 2002, Digestive Diseases and Sciences.

[57]  D. Granger,et al.  Time-dependent platelet-vessel wall interactions induced by intestinal ischemia-reperfusion. , 2003, American journal of physiology. Gastrointestinal and liver physiology.

[58]  D. Granger,et al.  Role of CD11/CD18 in shear rate-dependent leukocyte-endothelial cell interactions in cat mesenteric venules. , 1991, The Journal of clinical investigation.

[59]  M. Rodriguez,et al.  Polymicrobial sepsis and endotoxemia promote microvascular thrombosis via distinct mechanisms , 2010, Journal of thrombosis and haemostasis : JTH.

[60]  D. Granger,et al.  Endothelial expression of selectins during endotoxin preconditioning. , 2000, American journal of physiology. Regulatory, integrative and comparative physiology.

[61]  M. Karjalainen‐Lindsberg,et al.  Cerebral Mast Cells Regulate Early Ischemic Brain Swelling and Neutrophil Accumulation , 2006, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[62]  Michael J. Allingham,et al.  Endothelial cell junctions and the regulation of vascular permeability and leukocyte transmigration , 2008, Journal of thrombosis and haemostasis : JTH.

[63]  T. Aw,et al.  Microvascular responses to inhibition of nitric oxide production. Role of active oxidants. , 1995, Circulation research.

[64]  D. Granger,et al.  Enteric microflora contribute to constitutive ICAM-1 expression on vascular endothelial cells. , 2000, American journal of physiology. Gastrointestinal and liver physiology.

[65]  Borna Mehrad,et al.  Chemokines as Mediators of Neovascularization , 2008, Arteriosclerosis, thrombosis, and vascular biology.

[66]  K. Messmer,et al.  The microcirculation in atherogenesis. , 1996, Cardiovascular research.

[67]  D. Bergqvist,et al.  Modification of postischemic increase of leukocyte adhesion and vascular permeability in the hamster by Iloprost. , 1991, Prostaglandins.

[68]  John H. Zhang,et al.  Molecular Determinants of the Prothrombogenic and Inflammatory Phenotype Assumed by the Postischemic Cerebral Microcirculation , 2003, Stroke.

[69]  R. Hynes,et al.  Platelets adhere to and translocate on von Willebrand factor presented by endothelium in stimulated veins. , 2000, Blood.

[70]  S. Zahler,et al.  Disparate effects of adhesion and degranulation of platelets on myocardial and coronary function in postischaemic hearts. , 1998, Cardiovascular research.

[71]  Claudio Napoli,et al.  Understanding the immunoangiostatic CXC chemokine network. , 2008, Cardiovascular research.

[72]  D. Anderson,et al.  Leukocyte adhesion and hepatic microvascular responses to intestinal ischemia/reperfusion in rats. , 1996, Gastroenterology.

[73]  Wayne F. Patton,et al.  Platelet-derived lysophosphatidic acid decreases endothelial permeability in vitro. , 1998, American journal of physiology. Heart and circulatory physiology.

[74]  C. Fernández-Hernando,et al.  Endothelial caveolin-1 regulates pathologic angiogenesis in a mouse model of colitis. , 2009, Gastroenterology.

[75]  D. Granger,et al.  CD40-CD40 ligand mediates the recruitment of leukocytes and platelets in the inflamed murine colon. , 2007, Gastroenterology.

[76]  C. A. de la Motte,et al.  Platelets trigger a CD40-dependent inflammatory response in the microvasculature of inflammatory bowel disease patients. , 2003, Gastroenterology.

[77]  K. Stokes,et al.  Cerebral Microvascular Responses to Hypercholesterolemia: Roles of NADPH Oxidase and P-Selectin , 2004, Circulation research.

[78]  D. Zawieja,et al.  Inflammation induces lymphangiogenesis through up-regulation of VEGFR-3 mediated by NF-kappaB and Prox1. , 2010, Blood.

[79]  K. Wiesenfeld,et al.  On the comparison between Josephson‐junction array variations , 1991 .

[80]  Laughlin Mh Endothelium-mediated control of coronary vascular tone after chronic exercise training. , 1995 .

[81]  H. Miller,et al.  Tissue‐specific expression of mast cell granule serine proteinases and their role in inflammation in the lung and gut , 2002, Immunology.

[82]  I. Herman,et al.  The pericyte: cellular regulator of microvascular blood flow. , 2009, Microvascular research.

[83]  J. McCord,et al.  Superoxide radicals in feline intestinal ischemia. , 1981, Gastroenterology.

[84]  M. Suematsu,et al.  Effect of rat CINC/gro, a member of the interleukin-8 family, on leukocytes in microcirculation of the rat mesentery. , 1992, Experimental and molecular pathology.

[85]  C. Epstein,et al.  Modulation of P-selectin expression in the postischemic intestinal microvasculature. , 1997, American journal of physiology. Gastrointestinal and liver physiology.

[86]  S. Weiss Tissue destruction by neutrophils. , 1989, The New England journal of medicine.

[87]  S. Weiss,et al.  Breaching the basement membrane: who, when and how? , 2008, Trends in cell biology.

[88]  K. Stokes,et al.  Role of the protein C pathway in the extraintestinal thrombosis associated with murine colitis. , 2008, Gastroenterology.

[89]  D. Kenny,et al.  Platelet receptor redox regulation , 2008, Platelets.

[90]  K. Stokes,et al.  Tissue factor: a mediator of inflammatory cell recruitment, tissue injury, and thrombus formation in experimental colitis , 2007, The Journal of experimental medicine.

[91]  S. Licence,et al.  Characterization of E-selectin expression in vivo with use of a radiolabeled monoclonal antibody. , 1994, The American journal of physiology.

[92]  P. Kubes,et al.  Colchicine and methotrexate reduce leukocyte adherence and emigration in rat mesenteric venules , 1992, Inflammation.

[93]  K. Ley,et al.  Critical role of endothelial P-selectin glycoprotein ligand 1 in chronic murine ileitis , 2006, The Journal of experimental medicine.

[94]  J. Alexander,et al.  Gastrointestinal lymphatics in health and disease. , 2010, Pathophysiology : the official journal of the International Society for Pathophysiology.

[95]  H. Lehr,et al.  Microcirculatory dysfunction in sepsis: a pathogenetic basis for therapy? , 2000, The Journal of pathology.

[96]  Role of Kupffer cells in gut ischemia/reperfusion‐induced hepatic microvascular dysfunction in mice , 1997, Hepatology.

[97]  D. Granger,et al.  Pathophysiology of ischaemia–reperfusion injury , 2000, The Journal of pathology.

[98]  P. Tam,et al.  Depletion of intestinal resident macrophages prevents ischaemia reperfusion injury in gut , 2004, Gut.

[99]  P. Popovich,et al.  Macrophage depletion alters the blood–nerve barrier without affecting Schwann cell function after neural injury , 2007, Journal of neuroscience research.

[100]  C. Stefanadis,et al.  The CD40/CD40 ligand system: linking inflammation with atherothrombosis. , 2009, Journal of the American College of Cardiology.

[101]  J. Garcia,et al.  Role of sphingosine-1 phosphate in the enhancement of endothelial barrier integrity by platelet-released products. , 2003, American journal of physiology. Lung cellular and molecular physiology.

[102]  L. Kuo,et al.  Endothelial Modulation of Arteriolar Tone , 1992 .

[103]  B. Finlay,et al.  Lack of Functional P-Selectin Ligand Exacerbates Salmonella Serovar Typhimurium Infection1 , 2009, The Journal of Immunology.

[104]  J. Harlan Leukocyte-endothelial interactions. , 1985, Blood.

[105]  Ş. Çetinel,et al.  Blood flow alterations in TNBS-induced colitis: Role of endothelin receptors , 2004, Inflammation Research.

[106]  S. Abramson,et al.  Neutrophil adherence to endothelium is enhanced via adenosine A1 receptors and inhibited via adenosine A2 receptors. , 1992, Journal of immunology.

[107]  P. Frenette,et al.  HETEROTYPIC INTERACTIONS ENABLED BY POLARIZED NEUTROPHIL MICRODOMAINS MEDIATE THROMBO-INFLAMMATORY INJURY , 2009, Nature Medicine.

[108]  H. Asakura,et al.  Activated Platelets in Ulcerative Colitis Enhance the Production of Reactive Oxygen Species by Polymorphonuclear Leukocytes , 2001, Scandinavian journal of gastroenterology.

[109]  A. Koch,et al.  Macrophages and their products in rheumatoid arthritis , 2007, Current opinion in rheumatology.

[110]  A. Selwyn,et al.  Endothelial function, inflammation, and prognosis in cardiovascular disease. , 2003, The American journal of medicine.

[111]  H A Lehr,et al.  Microcirculatory Dysfunction Induced by Cigarette Smoking , 2000, Microcirculation.

[112]  W. Aird The role of the endothelium in severe sepsis and multiple organ dysfunction syndrome. , 2003, Blood.

[113]  A. Burns,et al.  Microvascular Thrombosis Models in Venules and Arterioles In Vivo , 2005, Microcirculation.

[114]  M. Lingen,et al.  Role of leukocytes and endothelial cells in the development of angiogenesis in inflammation and wound healing. , 2001, Archives of pathology & laboratory medicine.

[115]  J. Sévigny,et al.  The E-NTPDase family of ectonucleotidases: Structure function relationships and pathophysiological significance , 2006, Purinergic Signalling.

[116]  D. Lominadze,et al.  In vivo platelet thrombus formation in microvessels of spontaneously hypertensive rats. , 1997, American journal of hypertension.

[117]  M. G. Oliver,et al.  Morphologic assessment of leukocyte-endothelial cell interactions in mesenteric venules subjected to ischemia and reperfusion , 1991, Inflammation.

[118]  P. Kubes,et al.  Nitric oxide: an endogenous modulator of leukocyte adhesion. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[119]  K. Stokes,et al.  Mechanisms of platelet and leukocyte recruitment in experimental colitis. , 2007, American journal of physiology. Gastrointestinal and liver physiology.

[120]  A. Aplin,et al.  Regulation of angiogenesis by macrophages, dendritic cells, and circulating myelomonocytic cells. , 2009, Current pharmaceutical design.

[121]  K. Matsumoto,et al.  Constitutive expression of ICAM-1 in rat microvascular systems analyzed by laser confocal microscopy. , 1997, The American journal of physiology.

[122]  K. Mitamura,et al.  Hemodynamics in the colonic mucosa of rats with dextran sulfate-induced colitis in the early phase , 1996, Journal of Gastroenterology.

[123]  P. Neumann,et al.  NAD(P)H oxidase mediates the endothelial barrier dysfunction induced by TNF-α , 2004 .

[124]  The cytoplasmic domain of tissue factor contributes to leukocyte recruitment and death in endotoxemia. , 2004 .

[125]  P. Thiagarajan,et al.  Platelet-Vessel Wall Interactions in Hemostasis and Thrombosis , 2010 .

[126]  D. Granger,et al.  Platelet–Vessel Wall Interactions in the Microcirculation , 2005, Microcirculation.

[127]  R. Alexander,et al.  Reactive oxygen species as mediators of angiogenesis signaling. Role of NAD(P)H oxidase , 2004, Molecular and Cellular Biochemistry.

[128]  Z. Ungvari,et al.  Hemodynamic forces, vascular oxidative stress, and regulation of BMP-2/4 expression. , 2009, Antioxidants & redox signaling.

[129]  D. Anderson,et al.  Hepatic leukostasis and hypoxic stress in adhesion molecule-deficient mice after gut ischemia/reperfusion. , 1997, The Journal of clinical investigation.

[130]  F. Fazal,et al.  Hug tightly and say goodbye: role of endothelial ICAM-1 in leukocyte transmigration. , 2009, Antioxidants & redox signaling.

[131]  T. W. Secomb,et al.  The endothelial surface layer , 2000, Pflügers Archiv.

[132]  Christopher G Ellis,et al.  The microcirculation as a functional system , 2005, Critical care.

[133]  J. Ryan,et al.  Mast cell modulation of the immune response , 2009, Current allergy and asthma reports.

[134]  J. Freedman Oxidative stress and platelets. , 2008, Arteriosclerosis, thrombosis, and vascular biology.

[135]  J. Constans,et al.  Circulating markers of endothelial function in cardiovascular disease. , 2006, Clinica chimica acta; international journal of clinical chemistry.

[136]  G. Schmid-Schönbein,et al.  Physiology and pathophysiology of leukocyte adhesion , 1995 .

[137]  C. Page,et al.  Pulmonary immune cells in health and disease: platelets. , 1994, The European respiratory journal.

[138]  G. Weissmann,et al.  Adenosine: an endogenous inhibitor of neutrophil-mediated injury to endothelial cells. , 1986, The Journal of clinical investigation.

[139]  C. Esmon,et al.  Inflammation, innate immunity and blood coagulation , 2010, Hämostaseologie.

[140]  M. Silva A brief survey of the history of inflammation , 2005, Agents and Actions.

[141]  K. Messmer,et al.  Platelet-endothelial cell interactions during ischemia/reperfusion : The role of P-selectin , 1998 .

[142]  M. Macey,et al.  Formation of Platelet-leukocyte Aggregates in Inflammatory Bowel Disease , 2004, Inflammatory bowel diseases.

[143]  D. Granger,et al.  Endothelial cell monolayers as a tool for studying microvascular pathophysiology. , 1997, American journal of physiology. Gastrointestinal and liver physiology.

[144]  R. Colvin,et al.  Effect of T cells on vascular permeability in early ischemic acute kidney injury in mice. , 2009, Microvascular research.

[145]  H. Schultheiss,et al.  Procoagulant Soluble Tissue Factor Is Released From Endothelial Cells in Response to Inflammatory Cytokines , 2005, Circulation research.

[146]  K. Stokes,et al.  Hypercholesterolemia promotes inflammation and microvascular dysfunction: role of nitric oxide and superoxide. , 2002, Free radical biology & medicine.

[147]  P. Kubes,et al.  Varying roles of E-selectin and P-selectin in different microvascular beds in response to antigen. , 1999, Journal of immunology.

[148]  P. Kubes,et al.  NO donors prevent integrin-induced leukocyte adhesion but not P-selectin-dependent rolling in postischemic venules. , 1994, The American journal of physiology.

[149]  M. Gawaz,et al.  Platelets in inflammation and atherogenesis. , 2005, The Journal of clinical investigation.

[150]  Paul Kubes,et al.  The microcirculation and inflammation: modulation of leukocyte‐endothelial cell adhesion , 1994, Journal of leukocyte biology.

[151]  M. Flessner Endothelial Glycocalyx and the Peritoneal Barrier , 2008, Peritoneal dialysis international : journal of the International Society for Peritoneal Dialysis.

[152]  D. Rampton,et al.  Platelets circulate in an activated state in inflammatory bowel disease. , 1994, Gastroenterology.

[153]  J. Spaan,et al.  Oxidized lipoproteins degrade the endothelial surface layer : implications for platelet-endothelial cell adhesion. , 2000, Circulation.

[154]  J. Heemskerk,et al.  Key Role of Platelet Procoagulant Activity in Tissue Factor‐and Collagen‐Dependent Thrombus Formation in Arterioles and Venules In Vivo Differential Sensitivity to Thrombin Inhibition , 2008, Microcirculation.

[155]  D. Altieri Interface Between Inflammation and Coagulation , 2001 .

[156]  J. Lord,et al.  Fibroblasts regulate the switch from acute resolving to chronic persistent inflammation. , 2001, Trends in immunology.

[157]  D. Granger,et al.  Microvascular Responses to Cardiovascular Risk Factors , 2010, Microcirculation.

[158]  D. Granger Physiology and pathophysiology of the microcirculation , 1998 .

[159]  W. Sessa Molecular control of blood flow and angiogenesis: role of nitric oxide , 2009, Journal of thrombosis and haemostasis : JTH.

[160]  D. Granger,et al.  Physiology and pathophysiology of the colonic circulation. , 1986, Clinics in gastroenterology.

[161]  B. Furie,et al.  Mechanisms of thrombus formation. , 2008, The New England journal of medicine.

[162]  C. Betsholtz,et al.  Endothelial/Pericyte Interactions , 2005, Circulation research.

[163]  P. Heeringa,et al.  Myeloperoxidase: molecular mechanisms of action and their relevance to human health and disease. , 2009, Antioxidants & redox signaling.

[164]  D. Granger,et al.  Platelet-associated NAD(P)H oxidase contributes to the thrombogenic phenotype induced by hypercholesterolemia. , 2007, Free radical biology & medicine.

[165]  D. Shima,et al.  VEGF function in vascular pathogenesis. , 2006, Experimental cell research.

[166]  Qiang Shen,et al.  Molecular mechanisms of endothelial hyperpermeability: implications in inflammation , 2009, Expert Reviews in Molecular Medicine.

[167]  E. Dejana,et al.  The role of junctional adhesion molecules in vascular inflammation , 2007, Nature Reviews Immunology.

[168]  K. Stokes,et al.  Splanchnic ischaemia-reperfusion injury: mechanistic insights provided by mutant mice. , 2001, Acta physiologica Scandinavica.

[169]  G. Born,et al.  Relationship between the velocity of rolling granulocytes and that of the blood flow in venules , 1973, The Journal of physiology.

[170]  R. Bonser,et al.  The effect of adhesion molecule blockade on pulmonary reperfusion injury. , 2002, The Annals of thoracic surgery.

[171]  R. Wolf,et al.  Leukocyte adherence in rat mesenteric venules: effects of adenosine and methotrexate. , 1993, Gastroenterology.

[172]  K. Alitalo,et al.  Lymphangiogenesis: Molecular Mechanisms and Future Promise , 2010, Cell.

[173]  D. Rampton,et al.  Review article: platelets in inflammatory bowel disease— pathogenetic role and therapeutic implications , 1997, Alimentary pharmacology & therapeutics.

[174]  D. Granger,et al.  Hypercholesterolemia Promotes P-Selectin–Dependent Platelet–Endothelial Cell Adhesion in Postcapillary Venules , 2003, Arteriosclerosis, thrombosis, and vascular biology.

[175]  M. Gerritsen,et al.  Endothelial cell gene expression in response to injury , 1993, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[176]  P. Kvietys,et al.  Transendothelial neutrophil migration. Role of neutrophil-derived proteases and relationship to transendothelial protein movement. , 1997, Circulation research.

[177]  F. D’Acquisto,et al.  Evidence that mast cell degranulation, histamine and tumour necrosis factor α release occur in LPS‐induced plasma leakage in rat skin , 1999, British journal of pharmacology.

[178]  P. Kubes,et al.  Leukocyte-endothelial cell interactions evoked by mast cells. , 1996, Cardiovascular research.

[179]  Stephen R. Clark,et al.  Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood , 2007, Nature Medicine.

[180]  M. Shibuya Brain angiogenesis in developmental and pathological processes: therapeutic aspects of vascular endothelial growth factor , 2009, The FEBS journal.

[181]  M. Félétou Calcium‐activated potassium channels and endothelial dysfunction: therapeutic options? , 2009, British journal of pharmacology.

[182]  M. Grisham,et al.  Role of neutrophils in ischemia-reperfusion-induced microvascular injury. , 1987, The American journal of physiology.

[183]  Steven Song,et al.  The role of pericytes in blood-vessel formation and maintenance. , 2005, Neuro-oncology.

[184]  G. Victorino,et al.  Ischemia-reperfusion injury in rats affects hydraulic conductivity in two phases that are temporally and mechanistically separate. , 2008, American journal of physiology. Heart and circulatory physiology.

[185]  D. Granger,et al.  The Evolving Paradigm for Blood Cell‐Endothelial Cell Interactions in the Cerebral Microcirculation , 2007, Microcirculation.

[186]  A. Huang,et al.  Effects of systemic inflammation on endothelium-dependent vasodilation. , 2006, Trends in cardiovascular medicine.

[187]  S. Baldus,et al.  Myeloperoxidase and its contributory role in inflammatory vascular disease. , 2006, Pharmacology & therapeutics.

[188]  M. Berndt,et al.  Platelet physiology and thrombosis. , 2004, Thrombosis research.

[189]  M. Grisham,et al.  Pathogenic angiogenesis in IBD and experimental colitis: new ideas and therapeutic avenues. , 2007, American journal of physiology. Gastrointestinal and liver physiology.

[190]  T. van der Poll,et al.  Two-way interactions between inflammation and coagulation. , 2005, Trends in cardiovascular medicine.

[191]  U. Förstermann Nitric oxide and oxidative stress in vascular disease , 2010, Pflügers Archiv - European Journal of Physiology.

[192]  L. Ellis,et al.  Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. , 2005, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[193]  D. Binion,et al.  Acquired microvascular dysfunction in inflammatory bowel disease: Loss of nitric oxide-mediated vasodilation. , 2003, Gastroenterology.

[194]  P. Kubes,et al.  Inhibition of nitric oxide production. Mechanisms of vascular albumin leakage. , 1993, Circulation research.

[195]  D. Harrison,et al.  Role of the T cell in the genesis of angiotensin II–induced hypertension and vascular dysfunction , 2007, The Journal of experimental medicine.

[196]  D. Slaaf,et al.  Hypercholesterolemia Enhances Thromboembolism in Arterioles but Not Venules: Complete Reversal by l-Arginine , 2002, Arteriosclerosis, thrombosis, and vascular biology.

[197]  N. Van Rooijen,et al.  Early activation of the alveolar macrophage is critical to the development of lung ischemia-reperfusion injury. , 2003, The Journal of thoracic and cardiovascular surgery.

[198]  Donald G Welsh,et al.  The Differential Hypothesis: A Provocative Rationalization of the Conducted Vasomotor Response , 2010, Microcirculation.

[199]  R. Wolf,et al.  T-lymphocytes modulate the microvascular and inflammatory responses to intestinal ischemia-reperfusion. , 2002 .

[200]  J. M. Robinson Phagocytic leukocytes and reactive oxygen species , 2009, Histochemistry and Cell Biology.

[201]  R. Korthuis,et al.  Neutrophil-mediated microvascular dysfunction in postischemic canine skeletal muscle. Role of granulocyte adherence. , 1990, Circulation research.

[202]  F. Carraro,et al.  Role of inflammatory mediators in angiogenesis. , 2005, Current drug targets. Inflammation and allergy.

[203]  A. Zarbock,et al.  Alveolar macrophage activation is a key initiation signal for acute lung ischemia-reperfusion injury. , 2006, American journal of physiology. Lung cellular and molecular physiology.

[204]  S. Danese,et al.  Inflammation and Coagulation in Inflammatory Bowel Disease: The Clot Thickens , 2007, The American Journal of Gastroenterology.

[205]  D. Granger,et al.  Leukocyte dependence of platelet adhesion in postcapillary venules. , 2004, American journal of physiology. Heart and circulatory physiology.

[206]  K. Messmer,et al.  Fibrinogen deposition at the postischemic vessel wall promotes platelet adhesion during ischemia-reperfusion in vivo. , 1999, Blood.

[207]  M. Cybulsky,et al.  Getting to the site of inflammation: the leukocyte adhesion cascade updated , 2007, Nature Reviews Immunology.

[208]  B. Bryan,et al.  The function of vascular endothelial growth factor , 2009, BioFactors.

[209]  Seung Yong Park,et al.  Mast cells can mediate vascular permeability through regulation of the PI3K-HIF-1alpha-VEGF axis. , 2008, American journal of respiratory and critical care medicine.

[210]  H. Prydz,et al.  The antithrombotic and anti-inflammatory effects of BCX-3607, a small molecule tissue factor/factor VIIa inhibitor. , 2006, Thrombosis research.

[211]  G. Schmid-Schönbein,et al.  Role of leukocytes in response to acute myocardial ischemia and reflow in dogs. , 1986, The American journal of physiology.

[212]  K. Ley,et al.  Endothelial, not hemodynamic, differences are responsible for preferential leukocyte rolling in rat mesenteric venules. , 1991, Circulation research.

[213]  D. Wink,et al.  The chemistry of nitrosative stress induced by nitric oxide and reactive nitrogen oxide species. Putting perspective on stressful biological situations , 2004, Biological chemistry.

[214]  P. Kubes,et al.  Molecular mechanisms of leukocyte recruitment: organ-specific mechanisms of action , 2003, Thrombosis and Haemostasis.

[215]  Dick W. Slaaf,et al.  The endothelial glycocalyx: composition, functions, and visualization , 2007, Pflügers Archiv - European Journal of Physiology.

[216]  H. Granger,et al.  Superoxide mediates reperfusion-induced leukocyte-endothelial cell interactions. , 1989, The American journal of physiology.

[217]  T. Yamashita,et al.  Overexpression of endothelial nitric oxide synthase in endothelial cells is protective against ischemia-reperfusion injury in mouse skeletal muscle. , 2002, The American journal of pathology.

[218]  R. Chervenak,et al.  T‐Lymphocytes Contribute to Hepatic Leukostasis and Hypoxic Stress Induced by Gut Ischemia‐Reperfusion , 1999, Microcirculation.

[219]  H. H. Lipowsky,et al.  Leukocyte margination and deformation in mesenteric venules of rat. , 1989, The American journal of physiology.

[220]  D. Granger,et al.  Roles of Inflammation and the Activated Protein C Pathway in the Brain Edema Associated With Cerebral Venous Sinus Thrombosis , 2010, Stroke.

[221]  D. Slaaf,et al.  Regulation of Microvascular Thromboembolism In Vivo , 2005, Microcirculation.

[222]  T. Yoshimoto,et al.  Molecular Mechanisms of Lymphangiogenesis , 2004, International journal of hematology.

[223]  D. Slaaf,et al.  Endogenous nitric oxide protects against thromboembolism in venules but not in arterioles. , 1998, Arteriosclerosis, thrombosis, and vascular biology.

[224]  D. Granger Ischemia‐Reperfusion: Mechanisms of Microvascular Dysfunction and the Influence of Risk Factors for Cardiovascular Disease , 1999, Microcirculation.

[225]  D. Lefer,et al.  Leukocyte and endothelial adhesion molecule studies in knockout mice. , 2004, Current opinion in pharmacology.

[226]  R. Hynes,et al.  CD40L stabilizes arterial thrombi by a β3 integrin–dependent mechanism , 2002, Nature Medicine.

[227]  E. M. Renkin,et al.  Exchange of Substances Through Capillary Walls , 2008 .

[228]  I. Kron,et al.  NADPH oxidase in bone marrow-derived cells mediates pulmonary ischemia-reperfusion injury. , 2009, American journal of respiratory cell and molecular biology.

[229]  R. Strieter,et al.  CXC chemokines in angiogenesis of cancer. , 2004, Seminars in cancer biology.

[230]  A. Usheva,et al.  CD39 is incorporated into plasma microparticles where it maintains functional properties and impacts endothelial activation , 2008, British journal of haematology.

[231]  J. Linden,et al.  CD4+ T lymphocytes mediate acute pulmonary ischemia-reperfusion injury. , 2009, The Journal of thoracic and cardiovascular surgery.

[232]  D. Granger,et al.  Hypercholesterolemia Promotes Leukocyte‐Dependent Platelet Adhesion in Murine Postcapillary Venules , 2004, Microcirculation.

[233]  K. Hirschi,et al.  Pericytes in the microvasculature. , 1996, Cardiovascular research.

[234]  C. Esmon The interactions between inflammation and coagulation , 2005, British journal of haematology.

[235]  S. Robson,et al.  Thromboregulatory manifestations in human CD39 transgenic mice and the implications for thrombotic disease and transplantation. , 2004, The Journal of clinical investigation.

[236]  P. Vanhoutte Endothelial control of vasomotor function: from health to coronary disease. , 2003, Circulation journal : official journal of the Japanese Circulation Society.

[237]  D. Adams,et al.  Disturbance of leucocyte circulation and adhesion to the endothelium as factors in circulatory pathology. , 1996, British journal of anaesthesia.

[238]  T. Neumann-Haefelin,et al.  NADPH Oxidase Plays a Central Role in Blood-Brain Barrier Damage in Experimental Stroke , 2007, Stroke.

[239]  T. Stulnig,et al.  Obesity, Inflammation, and Insulin Resistance – A Mini-Review , 2009, Gerontology.

[240]  J. Savickienė,et al.  Neutrophils Induce Sequential Focal Changes in Endothelial Adherens Junction Components: Role of Elastase , 2003, Microcirculation.

[241]  M. Labow,et al.  Heterogeneity of expression of E- and P-selectins in vivo. , 1996, Circulation research.

[242]  D. Granger,et al.  CD40/CD40L contributes to hypercholesterolemia-induced microvascular inflammation. , 2009, American journal of physiology. Heart and circulatory physiology.

[243]  R. Harris,et al.  Histamine stimulates a biphasic calcium response in the human tracheal epithelial cell line CF/T43. , 1993, The American journal of physiology.

[244]  E. Dejana,et al.  Immune Regulation by Microvascular Endothelial Cells: Directing Innate and Adaptive Immunity, Coagulation, and Inflammation1 , 2007, The Journal of Immunology.

[245]  T. Hibi,et al.  Colonic blood flow responses in experimental colitis: time course and underlying mechanisms. , 2005, American journal of physiology. Gastrointestinal and liver physiology.

[246]  M. Grisham,et al.  Association between blood flow and inflammatory state in a T‐cell transfer model of inflammatory bowel disease in mice , 2010, Inflammatory bowel diseases.

[247]  C. F. Pilati Macromolecular transport in canine coronary microvasculature. , 1990, The American journal of physiology.

[248]  T. Katayama,et al.  In vivo visualization of nitric oxide and interactions among platelets, leukocytes, and endothelium following hemorrhagic shock and reperfusion , 2009, Inflammation Research.

[249]  P. Quehenberger,et al.  The formation of platelet–leukocyte aggregates varies during the menstrual cycle , 2006, Platelets.

[250]  M. Sans,et al.  VEGF-A links angiogenesis and inflammation in inflammatory bowel disease pathogenesis. , 2009, Gastroenterology.

[251]  D. Granger,et al.  Differential Regulation of Leukocyte–Endothelial Cell Interactions , 2005 .

[252]  P. Borgeat,et al.  Transcellular metabolism of arachidonic acid in platelets and polymorphonuclear leukocytes activated by physiological agonists: enhancement of leukotriene B4 synthesis. , 1991, Advances in experimental medicine and biology.

[253]  L. Overbergh,et al.  VCAM-1 blockade delays disease onset, reduces disease severity and inflammatory cells in an atopic dermatitis model , 2009, Immunology and cell biology.

[254]  P. Kubes,et al.  A Role for Platelets and Endothelial Selectins in Tumor Necrosis Factor-&agr;–Induced Leukocyte Recruitment in the Brain Microvasculature , 2000, Circulation research.

[255]  H. Miura,et al.  The vascular contribution in the pathogenesis of inflammatory bowel disease. , 2003, American journal of physiology. Heart and circulatory physiology.

[256]  A. Mazar,et al.  Differential angiogenic regulation of experimental colitis. , 2006, The American journal of pathology.

[257]  C. Kleeman,et al.  Endothelin receptor in osteoblastic cells is coupled to multiple messenger signals. , 1994, The American journal of physiology.

[258]  H. Yoshida,et al.  Inflammatory bowel disease: A paradigm for the link between coagulation and inflammation , 2009, Inflammatory bowel diseases.

[259]  K. Arfors,et al.  Microvascular transport of macromolecules in normal and inflammatory conditions. , 1979, Acta physiologica Scandinavica. Supplementum.

[260]  P. Carmeliet,et al.  Aggravation of endotoxin-induced disseminated intravascular coagulation and cytokine activation in heterozygous protein-C-deficient mice. , 2003, Blood.

[261]  Prof. Dr. med. Gustav Steinhoff,et al.  Expression patterns of leukocyte adhesion ligand molecules on human liver endothelia. Lack of ELAM-1 and CD62 inducibility on sinusoidal endothelia and distinct distribution of VCAM-1, ICAM-1, ICAM-2, and LFA-3. , 1993, The American journal of pathology.

[262]  P. Kubes,et al.  Platelets, neutrophils, and neutrophil extracellular traps (NETs) in sepsis , 2008, Journal of thrombosis and haemostasis : JTH.

[263]  D. Wink,et al.  I. Physiological chemistry of nitric oxide and its metabolites: implications in inflammation. , 1999, American journal of physiology. Gastrointestinal and liver physiology.

[264]  R. McEver Selectins: lectins that initiate cell adhesion under flow. , 2002, Current opinion in cell biology.

[265]  K. Ley,et al.  Opening the flood-gates: how neutrophil-endothelial interactions regulate permeability. , 2009, Trends in immunology.

[266]  Gerritsen,et al.  Differential up-regulation of circulating soluble and endothelial cell intercellular adhesion molecule-1 in mice. , 1997, The American journal of pathology.

[267]  D. Granger,et al.  Postischemic endothelium-dependent vascular reactivity is preserved in adhesion molecule-deficient mice. , 1997, American journal of physiology. Heart and circulatory physiology.

[268]  E. Vila,et al.  Cytokines and vascular reactivity in resistance arteries. , 2005, American journal of physiology. Heart and circulatory physiology.

[269]  C. Esmon Crosstalk between inflammation and thrombosis. , 2004, Maturitas.

[270]  W. Rosenblum,et al.  Dimethyl sulfoxide (DMSO) and glycerol, hydroxyl radical scavengers, impair platelet aggregation within and eliminate the accompanying vasodilation of, injured mouse pial arterioles. , 1982, Stroke.

[271]  Ulrich Friedemann,et al.  BLOOD-BRAIN BARRIER , 1942 .

[272]  N. Simionescu,et al.  Structural aspects of the permeability of the microvascular endothelium. , 1979, Acta physiologica Scandinavica. Supplementum.

[273]  H. Dvorak,et al.  Vascular permeability, vascular hyperpermeability and angiogenesis , 2008, Angiogenesis.

[274]  A. Manning,et al.  Regional differences in constitutive and induced ICAM-1 expression in vivo. , 1995, The American journal of physiology.

[275]  H. Dvorak,et al.  Angiogenesis: update 2005 , 2005, Journal of thrombosis and haemostasis : JTH.

[276]  A. Vaheri,et al.  Cell‐cell contact activation of fibroblasts increases the expression of matrix metalloproteinases , 2006, Annals of medicine.

[277]  V. Huxley,et al.  Differential effects of L-NAME on rat venular hydraulic conductivity. , 2000, American journal of physiology. Heart and circulatory physiology.

[278]  D. Kimpel,et al.  Inhibition of Platelet Adherence to Brain Microvasculature Protects against Severe Plasmodium berghei Malaria , 2003, Infection and Immunity.

[279]  W. Kuebler,et al.  Endothelium-platelet interactions in inflammatory lung disease. , 2008, Vascular pharmacology.

[280]  H. Anders,et al.  POSTISCHEMIC VASCULAR PERMEABILITY REQUIRES BOTH TLR-2 AND TLR-4, BUT ONLY TLR-2 MEDIATES THE TRANSENDOTHELIAL MIGRATION OF LEUKOCYTES , 2009, Shock.

[281]  Michael A. Hill,et al.  Local Regulation of Microvascular Perfusion , 2011 .

[282]  R. Korthuis,et al.  Microvascular dysfunction in postischemic skeletal muscle. , 1994, Journal of investigative surgery : the official journal of the Academy of Surgical Research.

[283]  K. Alitalo,et al.  VEGFs and receptors involved in angiogenesis versus lymphangiogenesis. , 2009, Current opinion in cell biology.