Logic circuits from zero forcing
暂无分享,去创建一个
Simone Severini | Vittorio Giovannetti | Michael Young | Daniel Burgarth | Leslie Hogben | Michael Young | S. Severini | L. Hogben | V. Giovannetti | D. Burgarth
[1] Vittorio Giovannetti,et al. Full control by locally induced relaxation. , 2007, Physical review letters.
[2] Erik D. Demaine,et al. Any monotone boolean function can be realized by interlocked polygons , 2010, CCCG.
[3] Noga Alon,et al. The monotone circuit complexity of boolean functions , 1987, Comb..
[4] Ashkan Aazami,et al. Hardness results and approximation algorithms for some problems on graphs , 2008 .
[5] W. Haemers. Zero forcing sets and minimum rank of graphs , 2008 .
[6] Tommaso Toffoli,et al. Reversible Computing , 1980, ICALP.
[7] Erik D. Demaine,et al. Any Monotone Function Is Realized by Interlocked Polygons , 2012, Algorithms.
[8] Simone Severini,et al. Zero Forcing, Linear and Quantum Controllability for Systems Evolving on Networks , 2011, IEEE Transactions on Automatic Control.
[9] Robert Wille,et al. From Truth Tables to Programming Languages: Progress in the Design of Reversible Circuits , 2011, 2011 41st IEEE International Symposium on Multiple-Valued Logic.
[10] Sos S. Agaian,et al. New digit-serial implementations of stack filters , 1997, Signal Process..
[11] Igor L. Markov,et al. Synthesis and optimization of reversible circuits—a survey , 2011, CSUR.
[12] T. Toffoli,et al. Conservative logic , 2002, Collision-Based Computing.
[13] Hong-Jian Lai,et al. Large Survivable Nets and the Generalized Prisms , 1995, Discret. Appl. Math..
[14] Simone Severini,et al. Nondiscriminatory propagation on trees , 2008, 0805.0181.
[15] Paul M. B. Vitányi. Time, space, and energy in reversible computing , 2005, CF '05.
[16] Vittorio Giovannetti,et al. Local controllability of quantum networks , 2009 .
[17] Carl A. Gunter,et al. In handbook of theoretical computer science , 1990 .