Geometric hashing: an overview

Geometric hashing, a technique originally developed in computer vision for matching geometric features against a database of such features, finds use in a number of other areas. Matching is possible even when the recognizable database objects have undergone transformations or when only partial information is present. The technique is highly efficient and of low polynomial complexity.

[1]  Micha Sharir,et al.  Identification of Partially Obscured Objects in Two and Three Dimensions by Matching Noisy Characteristic Curves , 1987 .

[2]  Robert M. Haralick,et al.  Optimal affine-invariant point matching , 1990, [1990] Proceedings. 10th International Conference on Pattern Recognition.

[3]  David A. Forsyth,et al.  Invariant Descriptors for 3D Object Recognition and Pose , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  Haim J. Wolfson,et al.  Articulated object recognition, or: how to generalize the generalized Hough transform , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[5]  Isidore Rigoutsos,et al.  A Bayesian Approach to Model Matching with Geometric Hashing , 1995, Computer Vision and Image Understanding.

[6]  F. Dehne,et al.  Hypercube algorithms for parallel processing of pointer-based quadtrees , 1995 .

[7]  I. Rigoutsos,et al.  Searching in parallel for similar strings [biological sequences] , 1994, IEEE Computational Science and Engineering.

[8]  Gerard Medioni,et al.  Object recognition using geometric hashing on the Connection Machine , 1990, [1990] Proceedings. 10th International Conference on Pattern Recognition.

[9]  Gérard G. Medioni,et al.  Structural hashing: efficient three dimensional object recognition , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[10]  Yehezkel Lamdan,et al.  Object recognition by affine invariant matching , 2011, Proceedings CVPR '88: The Computer Society Conference on Computer Vision and Pattern Recognition.

[11]  Yehezkel Lamdan,et al.  Affine invariant model-based object recognition , 1990, IEEE Trans. Robotics Autom..

[12]  Robert A. Hummel,et al.  Massively parallel model matching: geometric hashing on the Connection Machine , 1992, Computer.

[13]  Yehezkel Lamdan,et al.  Geometric Hashing: A General And Efficient Model-based Recognition Scheme , 1988, [1988 Proceedings] Second International Conference on Computer Vision.

[14]  R. Nussinov,et al.  A geometry-based suite of molecular docking processes. , 1995, Journal of molecular biology.

[15]  Edith Schonberg,et al.  Two-Dimensional, Model-Based, Boundary Matching Using Footprints , 1986 .

[16]  Daphna Weinshall,et al.  3D object recognition by indexing structural invariants from multiple views , 1993, 1993 (4th) International Conference on Computer Vision.

[17]  F. Stein,et al.  Efficient two dimensional object recognition , 1990, [1990] Proceedings. 10th International Conference on Pattern Recognition.

[18]  Isidore Rigoutsos Massively parallel Bayesian object recognition , 1992 .

[19]  H. Wolfson,et al.  Efficient detection of three-dimensional structural motifs in biological macromolecules by computer vision techniques. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[20]  Haim J. Wolfson,et al.  Generalizing the generalized hough transform , 1991, Pattern Recognit. Lett..

[21]  Anil K. Jain,et al.  3D object recognition using invariant feature indexing of interpretation tables , 1992, CVGIP Image Underst..

[22]  Robert M. Haralick,et al.  Optimal affine-invariant matching: performance characterization , 1992, Electronic Imaging.

[23]  Yehezkel Lamdan,et al.  On recognition of 3-D objects from 2-D images , 2011, Proceedings. 1988 IEEE International Conference on Robotics and Automation.

[24]  Yehezkel Lamdan,et al.  On the error analysis of 'geometric hashing' , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[25]  Ruth Nussinov,et al.  An automated computer vision and robotics-based technique for 3-D flexible biomolecular docking and matching , 1995, Comput. Appl. Biosci..

[26]  Ruth Nussinov,et al.  3-D Substructure Matching in Protein Molecules , 1992, CPM.