Fuzzy Control and Fuzzy Kinematic Mapping for a Redundant Space Robot

Abstract : This report documents parts of the research in the Self Mobile Space Manipulator project at Carnegie Mellon University. We developed Fuzzy Logic Friction Compensation schemes that improve motion performance Of SM2. Both static and dynamic errors are reduced. Also, we propose Fuzzy Inverse Kinematic Mapping to resolve the redundancy problem in SM2. The proposed scheme works identically for redundant and non-redundant robots, does not require any constraints to be imposed on the robot configuration and provides a closed-form solution. We investigated this scheme in simulation and then implemented it for real-time teleoperation of SM2.

[1]  Takeo Kanade,et al.  Control system of Self-Mobile Space Manipulator , 1992, Proceedings 1992 IEEE International Conference on Robotics and Automation.

[2]  R.P. Paul,et al.  Fuzzy control of robot and compliant wrist system , 1991, Conference Record of the 1991 IEEE Industry Applications Society Annual Meeting.

[3]  Benjamin Kuipers,et al.  The Composition of Heterogeneous Control Laws , 1991, 1991 American Control Conference.

[4]  D. P. Kwok,et al.  Analysis and design of fuzzy PID control systems , 1991 .

[5]  A. Kandel,et al.  Mechanism of fuzzy logic controller , 1990, [1990] Proceedings. First International Symposium on Uncertainty Modeling and Analysis.

[6]  Pierre E. Dupont,et al.  Friction modeling in dynamic robot simulation , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[7]  Carlos Canudas de Wit,et al.  Robust adaptive friction compensation , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[8]  Christine Chevallereau,et al.  A new method for the solution of the inverse kinematics of redundant robots , 1988, Proceedings. 1988 IEEE International Conference on Robotics and Automation.

[9]  Brian Armstrong,et al.  Friction: experimental determination, modeling and compensation , 1988, Proceedings. 1988 IEEE International Conference on Robotics and Automation.

[10]  Max Donath,et al.  Coulomb friction effects on the dynamics of bearings and transmissions in precision robot mechanisms , 1988, Proceedings. 1988 IEEE International Conference on Robotics and Automation.

[11]  Ashitava Ghosal,et al.  A New Approach for Kinematic Resolution of Redundancy , 1988, Int. J. Robotics Res..

[12]  Christine Chevallereau,et al.  Efficient method for the calculation of the pseudo inverse kinematic problem , 1987, Proceedings. 1987 IEEE International Conference on Robotics and Automation.

[13]  Pyung Chang,et al.  A closed-form solution for the control of manipulators with kinematic redundancy , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[14]  John Baillieul,et al.  Avoiding obstacles and resolving kinematic redundancy , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[15]  G. Schmidt Grundlagen der Regelungstechnik : Analyse und Entwurf linearer und einfacher nichtlinearer Regelungen sowie diskreter Steuerungen , 1994 .

[16]  Yoshihiko Nakamura Advanced robotics - redundancy and optimization , 1991 .

[17]  Chuen-Chien Lee FUZZY LOGIC CONTROL SYSTEMS: FUZZY LOGIC CONTROLLER - PART I , 1990 .

[18]  C. W. de Silva,et al.  Knowledge-based control with application to robots , 1989 .

[19]  John M. Hollerbach,et al.  Redundancy resolution of manipulators through torque optimization , 1985, Proceedings. 1985 IEEE International Conference on Robotics and Automation.

[20]  Lotfi A. Zadeh,et al.  Outline of a New Approach to the Analysis of Complex Systems and Decision Processes , 1973, IEEE Trans. Syst. Man Cybern..