Parathyroid hormone degradation by opossum kidney cells via receptor-mediated endocytosis and lysosomal hydrolysis.

The mechanisms involved in parathyroid hormone (PTH) degradation by proximal renal tubule cells were studied using an opossum kidney cell line possessing PTH receptors as an in vitro model system. One hour incubation of 5 nmol/l human (h) PTH-(1-84) with intact opossum kidney cells (4.0 x 10(6) cells) resulted in about 70% degradation and disappearance of hPTH-(1-84) from the medium, as determined by a two-site immunoradiometric assay. Preincubation with 100 nmol/l h[Nle8, Nle18, Tyr34]PTH-(1-34)amide for 6, 24, 48 and 72 h caused a 26, 47, 62 and 73% decrease, respectively, in PTH degradation by opossum kidney cells. Binding studies with 125I-labeled h[Nle8,Nle18,Tyr34]PTH-(1-34)amide as a radioligand showed that PTH receptor binding decreased with the time of pretreatment with the agonist. Pretreatments of the cells with monensin, an inhibitor of endocytosis, and the lysosomotropic agents such as chloroquine, ammonium chloride and leupeptin, inhibited degradation of hPTH-(1-84) by 87, 71, 76 and 72%, respectively. Concentrations of 5 nmol/l hPTH-(39-84) and hPTH-(39-68), which are known not to bind to PTH receptors appreciably, were not degraded by opossum kidney cells during 1 h incubations. Thus intact, biologically active PTH, but not its inactive fragments, is degraded by opossum kidney cells, by receptor-mediated endocytosis and lysosomal hydrolysis. A mechanism resembling the peritubular uptake of intact PTH by perfused kidneys reported previously appears to play a main role in PTH metabolism by cultured renal cells.