Bulk-surface virtual element method for systems of PDEs in two-space dimensions

In this paper we consider a coupled bulk-surface PDE in two space dimensions. The model consists of a PDE in the bulk that is coupled to another PDE on the surface through general nonlinear boundary conditions. For such a system we propose a novel method, based on coupling a virtual element method [Beir\~ao da Veiga et al., 2013] in the bulk domain to a surface finite element method [Dziuk & Elliott, 2013] on the surface. The proposed method, which we coin the Bulk-Surface Virtual Element Method (BSVEM) includes, as a special case, the bulk-surface finite element method (BSFEM) on triangular meshes [Madzvamuse & Chung, 2016]. The method exhibits second-order convergence in space, provided the exact solution is $H^{2+1/4}$ in the bulk and $H^2$ on the surface, where the additional $\frac{1}{4}$ is required only in the simultaneous presence of surface curvature and non-triangular elements. Two novel techniques introduced in our analysis are (i) an $L^2$-preserving inverse trace operator for the analysis of boundary conditions and (ii) the Sobolev extension as a replacement of the lifting operator [Elliott & Ranner, 2013] for sufficiently smooth exact solutions. The generality of the polygonal mesh can be exploited to optimize the computational time of matrix assembly. The method takes an optimised matrix-vector form that also simplifies the known special case of BSFEM on triangular meshes [Madzvamuse & Chung, 2016]. Three numerical examples illustrate our findings.

[1]  C. Venkataraman,et al.  Stability analysis and simulations of coupled bulk-surface reaction–diffusion systems , 2015, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[2]  J. Mackenzie,et al.  Local modulation of chemoattractant concentrations by single cells: dissection using a bulk-surface computational model , 2016, Interface Focus.

[3]  J. Cooper SINGULAR INTEGRALS AND DIFFERENTIABILITY PROPERTIES OF FUNCTIONS , 1973 .

[4]  Matthias Röger,et al.  Symmetry breaking in a bulk–surface reaction–diffusion model for signalling networks , 2014 .

[5]  John A. Mackenzie,et al.  A computational method for the coupled solution of reaction–diffusion equations on evolving domains and manifolds: Application to a model of cell migration and chemotaxis , 2016, J. Comput. Phys..

[6]  Jiefu Chen,et al.  A memory efficient discontinuous galerkin finite‐element time‐domain scheme for simulations of finite periodic structures , 2014 .

[7]  Alan Demlow,et al.  Higher-Order Finite Element Methods and Pointwise Error Estimates for Elliptic Problems on Surfaces , 2009, SIAM J. Numer. Anal..

[8]  Maxim A. Olshanskii,et al.  A TRACE FINITE ELEMENT METHOD FOR A CLASS OF COUPLED BULK-INTERFACE TRANSPORT PROBLEMS ∗ , 2014, 1406.7694.

[9]  E. T. WHITTAKER,et al.  Partial Differential Equations of Mathematical Physics , 1932, Nature.

[10]  Charles M. Elliott,et al.  Coupled Bulk-Surface Free Boundary Problems Arising from a Mathematical Model of Receptor-Ligand Dynamics , 2015, SIAM J. Math. Anal..

[11]  Alpha A Lee,et al.  Degenerate mobilities in phase field models are insufficient to capture surface diffusion , 2015, 1505.06381.

[12]  Ahmed Alsaedi,et al.  Equivalent projectors for virtual element methods , 2013, Comput. Math. Appl..

[13]  Charles M. Elliott,et al.  Finite element methods for surface PDEs* , 2013, Acta Numerica.

[14]  C. M. Elliott,et al.  Finite element analysis for a coupled bulk-surface partial differential equation , 2013 .

[15]  Giuseppe Vacca,et al.  Virtual Element Methods for hyperbolic problems on polygonal meshes , 2016, Comput. Math. Appl..

[16]  S. Bianco,et al.  Bulk, surface properties and water uptake mechanisms of salt/acid amorphous composite systems. , 2013, International journal of pharmaceutics.

[17]  L. B. D. Veiga,et al.  A virtual element method with arbitrary regularity , 2014 .

[18]  L. Beirao da Veiga,et al.  The Virtual Element Method with curved edges , 2017, ESAIM: Mathematical Modelling and Numerical Analysis.

[19]  Peter Hansbo,et al.  Cut finite element methods for coupled bulk–surface problems , 2014, Numerische Mathematik.

[20]  Stefano Berrone,et al.  A globally conforming method for solving flow in discrete fracture networks using the Virtual Element Method , 2016 .

[21]  Franco Dassi,et al.  High-order Virtual Element Method on polyhedral meshes , 2017, Comput. Math. Appl..

[22]  Anotida Madzvamuse,et al.  Preserving invariance properties of reaction–diffusion systems on stationary surfaces , 2016, 1609.02741.

[23]  Charles M. Elliott,et al.  Evolving surface finite element method for the Cahn–Hilliard equation , 2013, Numerische Mathematik.

[24]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[25]  L. Beirao da Veiga,et al.  Divergence free Virtual Elements for the Stokes problem on polygonal meshes , 2015, 1510.01655.

[26]  Franco Brezzi,et al.  Virtual Element Methods for plate bending problems , 2013 .

[27]  G. Burton Sobolev Spaces , 2013 .

[28]  Giuseppe Savaré,et al.  Regularity Results for Elliptic Equations in Lipschitz Domains , 1998 .

[29]  Ivonne Sgura,et al.  Virtual Element Method for the Laplace-Beltrami equation on surfaces , 2016, 1612.02369.

[30]  E. Valdinoci,et al.  Hitchhiker's guide to the fractional Sobolev spaces , 2011, 1104.4345.

[31]  Simone Scacchi,et al.  A C1 Virtual Element Method for the Cahn-Hilliard Equation with Polygonal Meshes , 2015, SIAM J. Numer. Anal..

[32]  Emmanuil H. Georgoulis,et al.  Adaptive discontinuous Galerkin methods for nonstationary convection–diffusion problems , 2014 .

[33]  Maxim A. Olshanskii,et al.  A hybrid finite volume - finite element method for bulk-surface coupled problems , 2018, J. Comput. Phys..

[34]  A. Ibrahimbegovic,et al.  Anisotropic constitutive model of plasticity capable of accounting for details of meso-structure of two-phase composite material , 2012 .

[35]  K. Y. Dai,et al.  An n-sided polygonal smoothed finite element method (nSFEM) for solid mechanics , 2007 .

[36]  Michael J. Ward,et al.  Pattern Formation and Oscillatory Dynamics in a Two-Dimensional Coupled Bulk-Surface Reaction-Diffusion System , 2018, SIAM J. Appl. Dyn. Syst..

[37]  Felipe Lepe,et al.  A Virtual Element Method for the Steklov Eigenvalue Problem Allowing Small Edges , 2015, Journal of Scientific Computing.

[38]  Lourenço Beirão da Veiga,et al.  Virtual element methods for parabolic problems on polygonal meshes , 2015 .

[39]  L. Edelstein-Keshet,et al.  A coupled bulk-surface model for cell polarisation. , 2018, Journal of theoretical biology.

[40]  C. Lubich,et al.  Numerical analysis of parabolic problems with dynamic boundary conditions , 2015, 1501.01882.

[41]  F. Brezzi,et al.  Basic principles of Virtual Element Methods , 2013 .

[42]  Silvia Bertoluzza,et al.  High order VEM on curved domains , 2018, Rendiconti Lincei - Matematica e Applicazioni.

[43]  D. Adak,et al.  Convergence analysis of virtual element methods for semilinear parabolic problems on polygonal meshes , 2018, Numerical Methods for Partial Differential Equations.

[44]  Lourenço Beirão da Veiga,et al.  Virtual Elements for Linear Elasticity Problems , 2013, SIAM J. Numer. Anal..

[45]  Anotida Madzvamuse,et al.  The bulk-surface finite element method for reaction-diffusion systems on stationary volumes , 2016 .

[46]  Stefano Berrone,et al.  Orthogonal polynomials in badly shaped polygonal elements for the Virtual Element Method , 2017 .