Bulk-surface virtual element method for systems of PDEs in two-space dimensions
暂无分享,去创建一个
Anotida Madzvamuse | Ivonne Sgura | Massimo Frittelli | A. Madzvamuse | I. Sgura | Massimo Frittelli
[1] C. Venkataraman,et al. Stability analysis and simulations of coupled bulk-surface reaction–diffusion systems , 2015, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[2] J. Mackenzie,et al. Local modulation of chemoattractant concentrations by single cells: dissection using a bulk-surface computational model , 2016, Interface Focus.
[3] J. Cooper. SINGULAR INTEGRALS AND DIFFERENTIABILITY PROPERTIES OF FUNCTIONS , 1973 .
[4] Matthias Röger,et al. Symmetry breaking in a bulk–surface reaction–diffusion model for signalling networks , 2014 .
[5] John A. Mackenzie,et al. A computational method for the coupled solution of reaction–diffusion equations on evolving domains and manifolds: Application to a model of cell migration and chemotaxis , 2016, J. Comput. Phys..
[6] Jiefu Chen,et al. A memory efficient discontinuous galerkin finite‐element time‐domain scheme for simulations of finite periodic structures , 2014 .
[7] Alan Demlow,et al. Higher-Order Finite Element Methods and Pointwise Error Estimates for Elliptic Problems on Surfaces , 2009, SIAM J. Numer. Anal..
[8] Maxim A. Olshanskii,et al. A TRACE FINITE ELEMENT METHOD FOR A CLASS OF COUPLED BULK-INTERFACE TRANSPORT PROBLEMS ∗ , 2014, 1406.7694.
[9] E. T. WHITTAKER,et al. Partial Differential Equations of Mathematical Physics , 1932, Nature.
[10] Charles M. Elliott,et al. Coupled Bulk-Surface Free Boundary Problems Arising from a Mathematical Model of Receptor-Ligand Dynamics , 2015, SIAM J. Math. Anal..
[11] Alpha A Lee,et al. Degenerate mobilities in phase field models are insufficient to capture surface diffusion , 2015, 1505.06381.
[12] Ahmed Alsaedi,et al. Equivalent projectors for virtual element methods , 2013, Comput. Math. Appl..
[13] Charles M. Elliott,et al. Finite element methods for surface PDEs* , 2013, Acta Numerica.
[14] C. M. Elliott,et al. Finite element analysis for a coupled bulk-surface partial differential equation , 2013 .
[15] Giuseppe Vacca,et al. Virtual Element Methods for hyperbolic problems on polygonal meshes , 2016, Comput. Math. Appl..
[16] S. Bianco,et al. Bulk, surface properties and water uptake mechanisms of salt/acid amorphous composite systems. , 2013, International journal of pharmaceutics.
[17] L. B. D. Veiga,et al. A virtual element method with arbitrary regularity , 2014 .
[18] L. Beirao da Veiga,et al. The Virtual Element Method with curved edges , 2017, ESAIM: Mathematical Modelling and Numerical Analysis.
[19] Peter Hansbo,et al. Cut finite element methods for coupled bulk–surface problems , 2014, Numerische Mathematik.
[20] Stefano Berrone,et al. A globally conforming method for solving flow in discrete fracture networks using the Virtual Element Method , 2016 .
[21] Franco Dassi,et al. High-order Virtual Element Method on polyhedral meshes , 2017, Comput. Math. Appl..
[22] Anotida Madzvamuse,et al. Preserving invariance properties of reaction–diffusion systems on stationary surfaces , 2016, 1609.02741.
[23] Charles M. Elliott,et al. Evolving surface finite element method for the Cahn–Hilliard equation , 2013, Numerische Mathematik.
[24] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[25] L. Beirao da Veiga,et al. Divergence free Virtual Elements for the Stokes problem on polygonal meshes , 2015, 1510.01655.
[26] Franco Brezzi,et al. Virtual Element Methods for plate bending problems , 2013 .
[27] G. Burton. Sobolev Spaces , 2013 .
[28] Giuseppe Savaré,et al. Regularity Results for Elliptic Equations in Lipschitz Domains , 1998 .
[29] Ivonne Sgura,et al. Virtual Element Method for the Laplace-Beltrami equation on surfaces , 2016, 1612.02369.
[30] E. Valdinoci,et al. Hitchhiker's guide to the fractional Sobolev spaces , 2011, 1104.4345.
[31] Simone Scacchi,et al. A C1 Virtual Element Method for the Cahn-Hilliard Equation with Polygonal Meshes , 2015, SIAM J. Numer. Anal..
[32] Emmanuil H. Georgoulis,et al. Adaptive discontinuous Galerkin methods for nonstationary convection–diffusion problems , 2014 .
[33] Maxim A. Olshanskii,et al. A hybrid finite volume - finite element method for bulk-surface coupled problems , 2018, J. Comput. Phys..
[34] A. Ibrahimbegovic,et al. Anisotropic constitutive model of plasticity capable of accounting for details of meso-structure of two-phase composite material , 2012 .
[35] K. Y. Dai,et al. An n-sided polygonal smoothed finite element method (nSFEM) for solid mechanics , 2007 .
[36] Michael J. Ward,et al. Pattern Formation and Oscillatory Dynamics in a Two-Dimensional Coupled Bulk-Surface Reaction-Diffusion System , 2018, SIAM J. Appl. Dyn. Syst..
[37] Felipe Lepe,et al. A Virtual Element Method for the Steklov Eigenvalue Problem Allowing Small Edges , 2015, Journal of Scientific Computing.
[38] Lourenço Beirão da Veiga,et al. Virtual element methods for parabolic problems on polygonal meshes , 2015 .
[39] L. Edelstein-Keshet,et al. A coupled bulk-surface model for cell polarisation. , 2018, Journal of theoretical biology.
[40] C. Lubich,et al. Numerical analysis of parabolic problems with dynamic boundary conditions , 2015, 1501.01882.
[41] F. Brezzi,et al. Basic principles of Virtual Element Methods , 2013 .
[42] Silvia Bertoluzza,et al. High order VEM on curved domains , 2018, Rendiconti Lincei - Matematica e Applicazioni.
[43] D. Adak,et al. Convergence analysis of virtual element methods for semilinear parabolic problems on polygonal meshes , 2018, Numerical Methods for Partial Differential Equations.
[44] Lourenço Beirão da Veiga,et al. Virtual Elements for Linear Elasticity Problems , 2013, SIAM J. Numer. Anal..
[45] Anotida Madzvamuse,et al. The bulk-surface finite element method for reaction-diffusion systems on stationary volumes , 2016 .
[46] Stefano Berrone,et al. Orthogonal polynomials in badly shaped polygonal elements for the Virtual Element Method , 2017 .