Cross-Filtered Views for Multidimensional Visual Analysis

Analysis of multidimensional data often requires careful examination of relationships across dimensions. Coordinated multiple view approaches have become commonplace in visual analysis tools because they directly support expression of complex multidimensional queries using simple interactions. However, generating such tools remains difficult because of the need to map domain-specific data structures and semantics into the idiosyncratic combinations of interdependent data and visual abstractions needed to reveal particular patterns and distributions in cross-dimensional relationships. This paper describes: 1) a method for interactively expressing sequences of multidimensional set queries by cross-filtering data values across pairs of views and 2) design strategies for constructing coordinated multiple view interfaces for cross-filtered visual analysis of multidimensional data sets. Using examples of cross-filtered visualizations of data from several different domains, we describe how cross-filtering can be modularized and reused across designs, flexibly customized with respect to data types across multiple dimensions, and incorporated into more wide-ranging multiple view designs. We also identify several important limitations of the approach. The demonstrated analytic utility of these examples suggests that cross-filtering is a suitable design pattern for instantiation in a wide variety of visual analysis tools.

[1]  Christopher Ahlberg,et al.  Spotfire: an information exploration environment , 1996, SGMD.

[2]  Christopher Williamson,et al.  Dynamic queries for information exploration: an implementation and evaluation , 1992, CHI.

[3]  Niklas Elmqvist,et al.  A Taxonomy of 3D Occlusion Management for Visualization , 2008, IEEE Transactions on Visualization and Computer Graphics.

[4]  John T. Stasko,et al.  Jigsaw: Supporting Investigative Analysis through Interactive Visualization , 2007, 2007 IEEE Symposium on Visual Analytics Science and Technology.

[5]  Ben Shneiderman,et al.  Visual Information Seeking: Tight Coupling of Dynamic Query Filters with Starfield Displays , 1994 .

[6]  Barry G. T. Lowden,et al.  The REMIT System for Paraphrasing Relational Query Expressions into Natural Language , 1986, VLDB.

[7]  Hong Chen,et al.  Compound Brushing Explained† , 2004, Inf. Vis..

[8]  Matthew O. Ward,et al.  Structure-Based Brushes: A Mechanism for Navigating Hierarchically Organized Data and Information Spaces , 2000, IEEE Trans. Vis. Comput. Graph..

[9]  Ben Shneiderman,et al.  The eyes have it: a task by data type taxonomy for information visualizations , 1996, Proceedings 1996 IEEE Symposium on Visual Languages.

[10]  Kristin A. Cook,et al.  Illuminating the Path: The Research and Development Agenda for Visual Analytics , 2005 .

[11]  Chris North,et al.  Visualization Schemas and a Web-Based Architecture for Custom Multiple-View Visualization of Multiple-Table Databases , 2002, Inf. Vis..

[12]  Anthony C. Robinson,et al.  Visual Exploration and Analysis of Historic Hotel Visits , 2007, Inf. Vis..

[13]  David Allen Fyfe Commerce and sociability in small -town America: Explorations in historical GIScience , 2008 .

[14]  Matthew O. Ward,et al.  XmdvTool: integrating multiple methods for visualizing multivariate data , 1994, Proceedings Visualization '94.

[15]  Daniel A. Keim,et al.  Challenges in Visual Data Analysis , 2006, Tenth International Conference on Information Visualisation (IV'06).

[16]  Ralph Johnson,et al.  design patterns elements of reusable object oriented software , 2019 .

[17]  E. Tufte Beautiful Evidence , 2006 .

[18]  Mark Gahegan,et al.  Retooling Collaboration: A Vision for Environmental Change Research , 2005 .

[19]  Stephen Travis Pope,et al.  A cookbook for using the model-view controller user interface paradigm in Smalltalk-80 , 1988 .

[20]  John Anthony Roberts Multiple view and multiform visualization , 2000, Electronic Imaging.

[21]  Jeffrey Heer,et al.  Software Design Patterns for Information Visualization , 2006, IEEE Transactions on Visualization and Computer Graphics.

[22]  Chris North,et al.  A Taxonomy of Multiple Window Coordinations , 1998 .

[23]  Pat Hanrahan,et al.  Polaris: A System for Query, Analysis, and Visualization of Multidimensional Relational Databases , 2002, IEEE Trans. Vis. Comput. Graph..

[24]  Pat Hanrahan,et al.  Polaris: a system for query, analysis and visualization of multi-dimensional relational databases , 2000, IEEE Symposium on Information Visualization 2000. INFOVIS 2000. Proceedings.

[25]  Chris Weaver,et al.  Patterns of coordination in Improvise visualizations , 2007, Electronic Imaging.

[26]  Chris Weaver,et al.  Multidimensional visual analysis using cross-filtered views , 2008, 2008 IEEE Symposium on Visual Analytics Science and Technology.

[27]  John Riedl,et al.  An operator interaction framework for visualization systems , 1998, Proceedings IEEE Symposium on Information Visualization (Cat. No.98TB100258).

[28]  Anthony C. Robinson,et al.  Re-Visualization: Interactive Visualization of the Process of Visual Analysis , 2006 .

[29]  Miron Livny,et al.  Improvise: a user interface for interactive construction of highly-coordinated visualizations , 2006 .

[30]  Hong Chen,et al.  Compound brushing , 2003 .

[31]  Catherine Plaisant,et al.  The challenge of information visualization evaluation , 2004, AVI.

[32]  C. McClelland World event/interaction survey , 1978 .

[33]  M. Sheelagh T. Carpendale,et al.  VisLink: Revealing Relationships Amongst Visualizations , 2007, IEEE Transactions on Visualization and Computer Graphics.

[34]  Pat Hanrahan,et al.  Show Me: Automatic Presentation for Visual Analysis , 2007, IEEE Transactions on Visualization and Computer Graphics.